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Abstract

This online Appendix includes various proofs and details that were left out of our

manuscript “Is the GATT/WTO’s Article XXIV Bad?” due to space constraints.

For all the derivations, unless otherwise stated, we assume that the parameters of the

model lie within the relevant ranges for the analysis, namely γ ∈ [0, 1], N > 1 and k ∈ [1, N ].

A Properties of k∗ and k∗∗

To get an idea for which range of parameters the Article XXIV constraint binds, namely

where k∗∗ > 1, it is useful to study the variations of k∗ and k∗∗ with γ and N . It is immediate

to see that both k∗ and k∗∗ are increasing functions of N . The following shows that they

are decreasing functions of γ:

∂k∗(N, γ)

∂γ
=

Φk∗(N, γ)

4γ2
√

Γ(0) [Γ(0) + 1] Γ(N)

with Φk∗(N, γ) ≡ 4
√

Γ(0) [Γ(0) + 1] Γ(N) + γ3(N − 1) + 2γ(8− 3N)− 24. The denominator

being strictly positive, the derivative of k∗ is of the same sign as its numerator Φk∗ . Further-

more, ∂Φk∗
∂N

(N, γ) = γ
(
−6 + γ2 + 2

√
Γ(0)[Γ(0)+1]

Γ(N)

)
which is strictly negative for 0 ≤ γ ≤ 1 and
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N ≥ 1. So Φk∗ is a decreasing function of N and Φk∗(1, γ) = 4
√

2(2− γ)(3− γ)+10γ−24 <

4
√

12+10−24 < 0 and so Φk∗ is always negative and k∗ is a monotonically decreasing func-

tion of γ. When γ = 0, k∗ is infinite, when γ = 1, k∗ =

√
2(N+1)−1

2
> 0. So k∗ > 1 for any γ

and N ≥ 4. Furthermore
∂k∗∗(N, γ)

∂γ
=

Φk∗∗(N, γ)

2γ2Γ(2)2

with Φk∗∗(N, γ) ≡ −16− 16γ − 16(N − 2)γ2 + 4(N − 1)γ3 + (N − 1)γ4. The denominator

being strictly positive, the derivative of k∗∗ is of the same sign as its numerator Φk∗∗ . Note

that

Φk∗∗(N, γ) ≤ − 16− 16γ − 16(N − 2)γ2 + 4(N − 1)γ2 + (N − 1)γ2

≤ −
[
16 + 16γ + (11N − 27)γ2

]
≤ −16

[
1 + γ − γ2

]
< 0

and so k∗∗ is a decreasing function of γ. When γ = 0, k∗∗ is infinite, when γ = 1, k∗∗ =
2N−1

6
> 0. So k∗∗ > 1 for any γ and N ≥ 4, k∗∗ > 2 for any γ and N ≥ 7.

B Proofs from Section 3

Proof of Lemma 3. We want to prove that formation or expansion of CUs under the

Article XXIV constraint increases the aggregate welfare of member countries. To do so, we

suppose that CUs of size k, l, m, . . . , and size r merge and we show that the aggregate

welfare of the countries involved in the merger increases. Without loss of generality, we

consider the merger of a size−k CU and a size−s CU where s = l +m+ . . .+ r.

The proof consists of three steps: First, to prove the case where the Article XXIV

constraint does not bind on the CUs involved in the merger, we invoke the proof of Yi’s

(1996) Proposition 3; the case shown in Figure 1(a). Note that it is valid to consider a group

of CUs for whom the Article XXIV constraint does not bind even though it might bind on

other CUs not involved in the merger. Second, we prove the proposition for CUs on which

the Article XXIV constraint is binding as shown in Figure 1(b). Finally, we will show how

the first two sub-cases generalize for any CU merger.

Step 1: merger of CUs that are not constrained by Article XXIV - see Yi (1996),

Appendix B, pages 172–175

Step 2: merger of CUs that are constrained by Article XXIV

Here we consider the merger of size−k and size−s CUs such that the Article XXIV constraint

is binding for both the two individual CUs and for the resulting size−(k+ s) CU. The proof

proceeds similarly to Yi’s case of unconstrained CUs. The goal of the proof is to show

the following claim: Suppose that country i has free trade with k − 1 countries and levies

equal tariffs τc(k) = τ(1) on N − k countries. If country i abolishes tariffs on s countries,
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τc(l)

l

k s (k + s)? ? ?

(a) Article XXIV neither binding before nor after

τc(l)

l

k s (k + s)
? ? ?

(b) Article XXIV both binding before and after

Figure 1: Two different merger situations: external tariffs of original and resulting CUs.

s ≤ N − k, and levies τc(k + s) = τ(1) on the remaining N − k − s countries, then the

aggregate welfare of k + s countries (which consist of country i, k − 1 countries which pay

no tariffs, and s countries whose tariffs are eliminated) improves.

Without loss of generality, take country 1 and suppose that it levies no tariffs on countries

2, . . . , k, and τc(k) = τ(1) on countries k+1, . . . , N . We are interested in the following com-

parative statics exercise: what is the effect on the aggregate welfare of countries 1, . . . , k+s of

abolishing tariffs on countries k+1, . . . , k+s and keeping tariffs on countries k+s+1, . . . , N

at τc(k + s) = τ(1) = τc(k)?

Using the same notation as Yi (1996), consider a tariff vector

t ≡ (0, . . . , 0, τ, . . . , τ, τ ′, . . . , τ ′) (B.1)

where τ appears from the (k + 1)th column to the (k + s)th column and τ ′ from the (k +

s + 1)th column to the last column. Consider the following two tariff vectors: tc(k +

s) ≡ [0, . . . , 0, τc(k + s), . . . , τc(k + s)] with 0 in the first (k + s) columns and tc(k) ≡
[0, . . . , 0, τc(k), . . . , τc(k)] with 0 from the first to the kth column (where τc(k+ s) = τc(k) =

τ(1)). We can move from tc(k + s) to tc(k) by integrating from 0 to τc(k) the infinitesimal

changes from the tariff vector defined by (B.1) dt ≡ (0, . . . , 0, dτ, . . . , dτ, dτ ′, . . . , dτ ′) with

dτ ′ = 0: tc(k) = tc(k + s) +
∫ τc(k)

0
dt.

To prove our claim, similarly as Yi (1996), we show that d(
k+s∑
j=1

W j)/dt < 0 for all

t along such a path of integration. To do so, we first show that d(
k+s∑
j=1

W j)/dt < 0 for

tc(k+s) = [0, . . . , 0, τc(k + s), . . . , τc(k + s)]. And second, we show that d2(
k+s∑
j=1

W j)/dt2 < 0.

Step 2a: Since changes in country 1’s tariffs do not affect sales in other countries, d(
k+s∑
j=1

W j)/dt =
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d(Ŵ 1 +
k+s∑
j=2

π1j)/dt, where Ŵ 1 is country 1’s welfare net of its export profits. Since

Ŵ 1 +
N∑
j=2

π1j = v(q1) − cQ1, which is the net total benefit from consumption of q1,

Ŵ 1 +
k+s∑
j=2

π1j = v(q1)− cQ1 −
N∑

j=k+s+1

π1j. To save on notation, we can drop superscript 1.

The total tariff T at the tariff vector t is T =
N∑
j=1

τj = sτ + (N − k − s)τ ′ and dT =

sdτ + (N − k − s)dτ ′ = sdτ . From the first-order-condition of firms’ profit maximization,

pj − c = qj + τj. Then
N∑
j=1

[pj − c] = Q + T . At t, q1 = . . . = qk, qk+1 = . . . = qk+s and

qk+s+1 = . . . = qN . From (2), dqj =
γdT−Γ(N)dτj

Γ(0)Γ(N)
. Thus,

dq1

dt
=

γs

Γ(0)Γ(N)
,
dqk+1

dt
=
γs− Γ(N)

Γ(0)Γ(N)
and

dqN
dt

=
γs

Γ(0)Γ(N)

Using these results,

d

dt

(
Ŵ +

k+s∑
j=2

πj

)
=

d

dt
[v(q)− cQ]− d

dt

N∑
j=k+s+1

πj =
N∑
j=1

[pj − c]
dqj
dt
−

N∑
j=k+s+1

2qj
dqj
dt

=
sΩ

Γ(0)Γ(N)

where Ω ≡ γ(Q + T ) − Γ(N) [qk+1 + τ ] − 2(N − k − s)γqN . At tc(k + s), Ω = −Γ(0)q1 −
(N − k − s)γ [q1 + qN − τc(k + s)], and

q1 + qN − τc(k + s) =
1

Γ(0)Γ(N)
{2Γ(0)− [Γ(N) [Γ(0) + 1]− 2(N − k − s)γ] τc(k + s)}

=
1

D(1)Γ(N)

12− 12γ + 9γ2 − γ3 + γ(6− 5γ + γ2)N︸ ︷︷ ︸
≥0

−2γ(2 + γ)(k + s)


The expression in the square bracket is a linear, decreasing function of k + s. As we are

assuming that Article XXIV binds, we must have k + s ≤ k∗∗. Hence

q1 + qN − τc(k + s) ≥ 1

D(1)Γ(N)

[
12− 12γ + 9γ2 − γ3 + γ(6− 5γ + γ2)N − 2γ(2 + γ)k∗∗

]
=

(2 + γ)2

D(1)Γ(N)
> 0
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Step 2b: Again following Yi (1996), we have

d2

dt2

(
Ŵ +

k+s∑
j=2

πj

)
= − s

Γ(0)2Γ(N)2
{(1− γ)Γ(N)Γ(N − s) + sγ [Γ(0) + 2(N − k − s)γ]} < 0

Step 3: generalization

So far we have proved the proposition in two different situations: first, when the Article

XXIV constraint is not binding (neither for the initial CUs nor for the after-merger CU);

second when the Article XXIV constraint is binding in both cases. We now have to show

that the result still holds when the Article XXIV constraint is binding for (at least one

of) the initial CUs but not for after-merger CU. (It is easy to deduce from Figures 3a

and b that the converse cannot occur). This step is an easy comparative statics exercise.

Consider the tariffs of the CUs not involved in the merger as given (could be constrained or

unconstrained). The subscript u denotes an unconstrained CU and the subscript c denotes

a constrained CU. By Yi’s proof, we have (k+ s)Wu(k+ s) ≥ kWu(k) + sWu(s). Now given

the tariffs of the CUs not involved in this merger, the CUs of size-k and size-s involved

in this merger are better off when unconstrained compared to the constrained situation

kWu(k)+sWu(s) ≥ kWc(k)+sWc(s). So, we have (k+s)Wu(k+s) ≥ kWc(k)+sWc(s).

C Proofs from Section 4

Proof of Proposition 3. The goal here is to determine the impact on world welfare of

an expansion of a CU. Assume that C = {k1, k2, . . . , km} is the CU structure. Without

loss of generality, assume that the first CU (of size k1) is expanding by accepting members

from the last CU (of size km). We want to see the impact of an increase in the asymmetry

between these two CUs, so we assume k1 ≥ km. The large CU is imposing a CET τ1, the

small CU is imposing τm. The actual sub-structure {k2, . . . , km−1}, which stays constant,

will be irrelevant for the changes in world welfare and the only thing that will matter will

be the sum of the sizes of the other unions so let’s define k̃ ≡ k2 + . . . + km−1. We can

then re-express the size of the last CU km = N − k̃ − k1. We want to determine the sign of
dWW (k1,k2,...,N−k̃−k1)

dk1
. The total derivative can be decomposed as follows

dWW

dk1

=
∂WW

∂k1

∣∣∣∣
(τ1,τm)

+
∂WW

∂τ1︸ ︷︷ ︸
≤0

∂τ1

∂k1︸︷︷︸
≤0

+
∂WW

∂τm

∂τm
∂k1︸︷︷︸
=0

(C.1)

We assume that Article XXIV binds at least on the small union involved in the transfor-

mation, and so we have τm = τc(N − k̃ − k1) = τ(1) and hence ∂τm
∂k1

= 0. Therefore the last

term in (C.1) is zero. (Note that it is irrelevant whether Article XXIV binds or not on the

CUs not involved in the change considered.) Furthermore, with Article XXIV in place, we
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know that τ1 = τc(k1) is a non-increasing function of k1 and so we have ∂τ1
∂k1
≤ 0. From the

proof of Proposition 2 above we also have ∂WW

∂τ1
≤ 0. The remainder of this proof shows that

∂WW

∂k1

∣∣∣
(τ1,τm)

≥ 0 when k1 + km ≥ 2
3
N .

From (9) we have

WW = k1NS(k1) + (N − k̃ − k1)NS(N − k̃ − k1) +
m−1∑
i=2

kiNS(ki) (C.2)

Using (6), (7) and (8) we have

NS(ki) =
1

2Γ(0)2Γ(N)2
{NΓ(0)2 [Γ(N) + 1]− 2Γ(0)2(N − ki)τi

+ (N − ki)
[
D(ki)− 2Γ(ki)

2
]
τ 2
i }

(C.3)

Substituting (C.3) into (C.2) yields

WW =
1

2Γ(0)2Γ(N)2
{ (N − k̃)NΓ(0)2 [Γ(N) + 1]

−2Γ(0)2
[
k1(N − k1)τ1 + (N − k̃ − k1)(k̃ + k1)τm

]
+k1(N − k1)

[
D(k1)− 2Γ(k1)2

]
τ 2

1

+(N − k̃ − k1)(k̃ + k1)
[
D(N − k̃ − k1)− 2Γ(N − k̃ − k1)2

]
τ 2
m

}
+

m−1∑
i=2

kiNS(ki)

Differentiating with respect to k1 yields

∂WW

∂k1

∣∣∣∣
(τ1,τm)

=
1

2Γ(0)2Γ(N)2
{2Γ(0)2

[
(2k1 −N)τ1 + k̃τm + (2k1 + k̃ −N)τm

]
+α(k1, N, γ)τ 2

1 + β(k̃ + k1, N, γ)τ 2
m

} (C.4)

where

α(k,N, γ) ≡ − 3γ2 [Γ(N)−N ] k2

+ 2
[
−γ2(1− γ)N2 + 2γΓ(0)N + Γ(0)2(1− γ)

]
k

− Γ(0)2(1− γ + γN)N

β(k,N, γ) ≡ 3γ2 [Γ(N)−N ] k2

+ 2
[
2γ2(1− γ)N2 + γΓ(0)(2− 3γ)N + Γ(0)2(1− γ)

]
k

− (1− γ)Γ(N)2N
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Recall from the study of the Article XXIV constraint that Article XXIV can either bind on

both the small and the large union (τ1 = τm = τ(1)) or it can bind on the small union only

(τm = τ(1) and τ1 = τ(k1) ≤ τ(1)). Article XXIV can never bind on the large union and

not bind on the small union. To sign (C.4) we thus need to distinguish two cases:

1) Article XXIV binds on both the small and the large CUs (τ1 = τm = τ (1)):

When both unions are constrained, equation (C.4) simplifies to

∂WW

∂k1

∣∣∣∣
(τ1,τm)

=
(k1 − km)τ(1)

2Γ(0)2Γ(N)2

{
4Γ(0)2 +

[
Γ(0)2(1− γ + γN) + (1− γ)Γ(N)2

]
τ(1)

− k̃3γ2 [N − Γ(N)] τ(1)
} (C.5)

The first line of (C.5) is positive. The second line can be either positive or negative depending

on the parameters γ and N :

N − Γ(N) ≤ 0⇔ γ ≥ γ̄(N) ≡ N − 2

N − 1
(C.6)

Hence ∂WW

∂k1

∣∣∣
(τ1,τm)

is unambiguously positive for γ ≥ γ̄(N). For γ = 0, the expression of

the derivative (C.5) further simplifies and it is also unambiguously positive: ∂WW

∂k1

∣∣∣
(τ1,τm)

=

(k1−km)τ(1)
4

[2 + τ(1)] ≥ 0.

For 0 < γ < γ̄(N), the second line of (C.5) is negative. The whole expression ∂WW

∂k1

∣∣∣
(τ1,τm)

is positive provided that k̃ is sufficiently small. In other words, the two CUs involved in

the change considered have to represent a sufficient proportion of countries in the world: we

have to have k1 + km = N − k̃ ≥ k̄c ≡ max(0, k̂c) where

k̂c ≡ N − 4Γ(0)2 + [Γ(0)2(1− γ + γN) + (1− γ)Γ(N)2] τ(1)

3γ2 [N − Γ(N)] τ(1)

=
2 {(1− γ)γ2τ(1)N2 − 2Γ(0)γτ(1)N − Γ(0)2 [2 + (1− γ)τ(1)]}

3 [(1− γ)γ2τ(1)N − Γ(0)γ2τ(1)]

What can we say of k̄c? The denominator of k̂c is strictly positive on the range considered

(0 < γ < γ̄(N)). When the numerator of k̂c is negative, k̄c = 0, and the derivative of welfare

is positive for any value of k̃ up to N (the minimum size of the two CUs is zero). When the

numerator of k̂c is strictly positive, k̄c > 0. Furthermore, as −Γ(0)γ2τ(1) ≥ −2Γ(0)γτ(1),

we have

k̂c ≤
2 [(1− γ)γ2τ(1)N − 2Γ(0)γτ(1)]N

3 [(1− γ)γ2τ(1)N − 2Γ(0)γτ(1)]
=

2

3
N

Hence 0 ≤ k̄c ≤ 2
3
N .
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2) Article XXIV binds on the small union only (τ1 = τ (k1) ≤ τ (1) = τm):

With τm ≥ τ1, we have that

(2k1 −N)τ1 + k̃τm + (2k1 + k̃ −N)τm ≥ (2k1 −N)τ1 + k̃τ1 + (2k1 + k̃ −N)τm

= (k1 − km)(τ1 + τm) ≥ 0

And so the first line of (C.4) is unambiguously positive. We now need to sign the expressions

α and β. Before we proceed to do so, it is useful to recall certain conditions that have to be

satisfied when Article XXIV binds on the small union, but not on the large. First, we must

necessarily have γ > γN∞ = 7−
√

41
2

. Furthermore, for the large union not to be constrained,

we must have k1 ≥ k∗∗ ⇒ k̃ + k1 ≥ k∗∗. On the other hand, for the small union to be

constrained, we must have km = N − k̃− k1 ≤ k∗∗ ⇔ k̃+ k1 ≥ N − k∗∗. Which of these two

conditions binds depends on γ. From the study of k∗∗ we know that:

• For γ ≤ γN
2

= 3−
√

5, k∗∗ ≥ N − k∗∗, and so we have to have k̃+ k1 ≥ k∗∗ ≥ N − k∗∗.

• For γ > γN
2

= 3−
√

5, k∗∗ < N − k∗∗, and so we have to have k̃+ k1 ≥ N − k∗∗ > k∗∗.

We now proceed to sign α and β:

2.1) We show that β(k,N, γ) ≥ 0 for any N ≥ 6, γ ∈ [γN∞, 1] and

k ≥ max(k∗∗, N − k∗∗): β(k,N, γ) is a second degree polynomial in k. To sign it we

differentiate successively with respect to k.

∂2β(k,N, γ)

∂k2
= 6γ2 [Γ(N)−N ]

From (C.6) we know that this second derivative can be either positive or negative depending

on the parameters N and γ. We thus need to distinguish two sub-cases:

2.1.1) For γ > γ̄(N): ∂2β(k,N,γ)
∂k2

> 0 and so ∂β(k,N,γ)
∂k

is an increasing function of k. To sign

this first derivative, we evaluate it at the lower bound of our interval of interest. Assuming

N ≥ 6, we have γ̄(N) > γN
2

. We are thus interested in k = k̃ + k1 ≥ N − k∗∗.

∂

∂k
β(N − k∗∗, N, γ) =

1

2 + γ

(1− γ)2γ2(14− 3γ)︸ ︷︷ ︸
≥0 for γ∈[0,1]

N2 + 2γΓ(0)(10− 22γ + 18γ2 − 3γ3)︸ ︷︷ ︸
≥0 for γ∈[0,1]

N

+ Γ(0)2(4− 14γ + 16γ2 − 3γ3)︸ ︷︷ ︸
≥0 for γ∈[0,1]

 ≥ 0 (C.7)

and so ∂β(k,N,γ)
∂k

is positive for any k ≥ N − k∗∗.1 Hence β is an increasing function of k for

1This proof and many of the following proofs require us to sign various polynomial functions of γ like
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k ≥ N − k∗∗. Again, to sign β, we evaluate it at the lower bound k = N − k∗∗:

β(N − k∗∗, N, γ) =
Γ(0)

4γ(2 + γ)2
gβ(N, γ)

with

gβ(N, γ) ≡ + γ3(1− γ)(3− γ)(−10 + 19γ − 3γ2)N3

− γ2(1− γ)(176− 396γ + 328γ2 − 97γ3 + 9γ4)N2

+ γΓ(0)(4− 6γ + γ2)(−36 + 62γ − 47γ2 + 9γ3)N

+ Γ(0)2(4− 6γ + γ2)(−8 + 16γ − 14γ2 + 3γ3)

gβ(N, γ) is a third degree polynomial in N . To determine its sign we differentiate successively

with respect to N .
∂3gβ(N,γ)

∂N3 = 6γ3(1 − γ)(3 − γ)(−10 + 19γ − 3γ2) ≥ 0 for γ ≥ γN
2

so
∂2gβ(N,γ)

∂N2 is an increasing function of N . As ∂2

∂N2 gβ(6, γ) = 2γ2(1 − γ)(−176 − 144γ +

878γ2 − 407γ3 + 45γ4) ≥ 0 for γ ≥ γN
2

,
∂2gβ(N,γ)

∂N2 is positive for any N ≥ 6 and
∂gβ(N,γ)

∂N

is an increasing function of N for N ≥ 6. Furthermore,
∂gβ(6,γ)

∂N
= γ(−288 − 1040γ +

1968γ2 + 3144γ3 − 5742γ4 + 2195γ5 − 225γ6) ≥ 0 for γ ≥ γN
2

and so the first derivative

is positive for any N ≥ 6 and gβ(N, γ) is an increasing function of N . Finally, gβ(6, γ) =

−128− 1152γ − 1024γ2 + 5376γ3 + 2288γ4 − 8460γ5 + 3550γ6 − 375γ7 ≥ 0 for γ ≥ γN
2

and

so gβ(N, γ) is positive for any N ≥ 6 and γ ≥ γN
2

. Thus we have that β(N − k∗∗, N, γ) ≥ 0

and so β(k,N, γ) is positive for any k ≥ N − k∗∗, N ≥ 6 and γ > γ̄(N).

2.1.2) For γ ≤ γ̄(N): ∂2β(k,N,γ)
∂k2

≤ 0 and so ∂β(k,N,γ)
∂k

is a decreasing function of k. We

need to distinguish two further sub-cases:

2.1.2.1) γN
2
≤ γ ≤ γ̄(N): We know from (C.7) that ∂

∂k
β(N − k∗∗, N, γ) is positive. On

the other hand ∂
∂k
β(N,N, γ) can be either positive or negative for γ ≤ γ̄(N). Therefore,

β(k,N, γ) is either an increasing function of k or it is initially an increasing and then

decreasing function of k. In either of these two cases, if we show that β(k,N, γ) is positive

on the bounds of the interval [N − k∗∗, N ], we will know that it is positive for any k in this

interval. From the above, we know already that at the lower bound β(N −k∗∗, N, γ) ≥ 0 for

γ ≥ γN
2

. Furthermore, we have at the upper bound β(N,N, γ) = Γ(0)2N(1− γ + γN) ≥ 0.

And so β(k,N, γ) is positive for any k ≥ N − k∗∗, N ≥ 6 and γ ≥ γN
2

.

2.1.2.2) γ < γN
2
≤ γ̄(N): When γN

2
≤ γ̄(N), we have k∗∗ ≥ N −k∗∗ and we are therefore

interested in signing β for k ∈ [k∗∗, N ]. From (C.7) we know that ∂
∂k
β(N − k∗∗, N, γ)

is positive and as we already mentioned ∂
∂k
β(N,N, γ) can be either positive or negative

for γ ≤ γ̄(N). As ∂β(k,N,γ)
∂k

is a decreasing function of k, we have ∂
∂k
β(N − k∗∗, N, γ) ≥

4 − 14γ + 16γ2 − 3γ3 above. All these functions are continuous and differentiable. They are function of
a single variable γ taking values in a bounded interval [0, 1] or parts of this interval. The sign of these
functions can be determined by successive differentiation with respect to γ. For the sake of space, we will
not present these detailed differentiations.
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∂
∂k
β(k∗∗, N, γ). If ∂

∂k
β(k∗∗, N, γ) ≤ 0 then we necessarily have ∂

∂k
β(N,N, γ) ≤ 0 and the first

derivative is negative on the whole range of interest. In this case, β(k,N, γ) is a decreasing

function of k on [k∗∗, N ]. If ∂
∂k
β(k∗∗, N, γ) ≥ 0, we can still have ∂

∂k
β(N,N, γ) of either sign

in which case β(k,N, γ) is either monotonically increasing or initially increasing and then

decreasing in [k∗∗, N ]. In any of these three cases, if we show that β(k,N, γ) is positive on

the bounds of the interval [k∗∗, N ], we will know that it is positive for any k in this interval.

We already know that β(N,N, γ) ≥ 0. We now need to sign β(k∗∗, N, γ).

β(k∗∗, N, γ) =
1

4γ(2 + γ)2
fβ(N, γ)

with

fβ(N, γ) ≡ − γ3(1− γ)2(14− 3γ)(2− 7γ + γ2)N3

+ γ2Γ(0)(−16 + 284γ − 676γ2 + 509γ3 − 122γ4 + 9γ5)N2

+ γ(1− γ)Γ(0)2(4− 6γ + γ2)(12 + 58γ − 9γ2)N

+ Γ(0)3(4− 6γ + γ2)(8 + 8γ − 22γ2 + 3γ3)

fβ(N, γ) is a third degree polynomial on N . To determine its sign we differentiate succes-

sively with respect to N .
∂3fβ(N,γ)

∂N3 = −6γ3(1− γ)2(14− 3γ)(2− 7γ + γ2) ≥ 0 for γ ≥ γN∞

so
∂2fβ(N,γ)

∂N2 is an increasing function of N . As ∂2

∂N2fβ(6, γ) = 2γ2(−32 + 80γ + 1244γ2 −
3184γ3 + 2433γ4 − 598γ5 + 45γ6) ≥ 0 for γ ∈ [γN∞, γN

2
],

∂2fβ(N,γ)

∂N2 is positive for any N ≥ 6

and
∂fβ(N,γ)

∂N
is an increasing function of N for N ≥ 6. Furthermore,

∂fβ(6,γ)

∂N
= γ(192−128γ+

1456γ2 + 1824γ3 − 11892γ4 + 11084γ5 − 2905γ6 + 225γ7) ≥ 0 for γ ∈ [γN∞, γN
2

] and so the

first derivative is positive for any N ≥ 6 and fβ(N, γ) is an increasing function of N . Finally,

fβ(6, γ) = 256+640γ−256γ2+2432γ3−2176γ4−13720γ5+16720γ6−4700γ7+375γ8 ≥ 0 for

γ ∈ [γN∞, γN
2

] and so fβ(N, γ) is positive for any N ≥ 6 and γ ∈ [γN∞, γN
2

]. Thus we have

that β(k∗∗, N, γ) ≥ 0 and so β(k,N, γ) is positive for any k ≥ k∗∗, N ≥ 6 and γ ∈ [γN∞, γN
2

].

Hence we have shown that β(k,N, γ) is positive for N ≥ 6, γ ∈ [γN∞, 1] and k ≥
max(k∗∗, N −k∗∗) which covers the entire relevant range where the Article XXIV constraint

might bind on the small union, but not on the large union.

2.2) α(k,N, γ): Similar derivations as for β(k,N, γ) show that α(k,N, γ) can be either

positive or negative depending on the parameters. We can therefore distinguish two cases:

2.2.1) When α(k,N, γ) ≥ 0: We can immediately conclude that ∂WW

∂k1

∣∣∣
(τ1,τm)

is positive.

2.2.1) When α(k,N, γ) < 0: We can note that

α(k1, N, γ)τ 2
1 + β(k̃ + k1, N, γ)τ 2

m ≥
[
α(k1, N, γ) + β(k̃ + k1, N, γ)

]
τ 2
m
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and

∂WW

∂k1

∣∣∣∣
(τ1,τm)

≥ (k1 − km)

2Γ(0)2Γ(N)2

{
2Γ(0)2(τ1 + τm) +

[
Γ(0)2(1− γ + γN) + (1− γ)Γ(N)2

]
τ 2
m

− k̃3γ2 [N − Γ(N)] τ 2
m

}
(C.8)

As in (C.5) in the constrained case 1), the first line of (C.8) is positive. The second line

can be either positive or negative depending on the parameters γ and N . The second line

is positive for γ > γ̄(N) and for γ = 0, and thus the partial derivative of welfare is positive

for these values. For 0 < γ < γ̄(N), the second line of (C.8) is negative. The whole

expression ∂WW

∂k1

∣∣∣
(τ1,τm)

is again positive provided that k̃ is sufficiently small. We have to

have k1 + km = N − k̃ ≥ k̄u ≡ max(0, k̂u) where

k̂u ≡ N − 2Γ(0)2(τ1 + τm) + [Γ(0)2(1− γ + γN) + (1− γ)Γ(N)2] τ 2
m

3γ2 [N − Γ(N)] τ 2
m

=
2 {(1− γ)γ2τ 2

mN
2 − 2Γ(0)γτ 2

mN − Γ(0)2 [τ1 + τm + (1− γ)τ 2
m]}

3 [(1− γ)γ2τ 2
mN − Γ(0)γ2τ 2

m]

And we have as in the constrained case 1)

k̂u ≤
2 [(1− γ)γ2τmN − 2Γ(0)γτm]N

3 [(1− γ)γ2τmN − 2Γ(0)γτm]
=

2

3
N

And so for k1 + km ≥ 2N
3

, we have unambiguously in both cases 1) and 2)

dWW

dk1

=
∂WW

∂k1

∣∣∣∣
(τ1,τm)︸ ︷︷ ︸

≥0

+
∂WW

∂τ1︸ ︷︷ ︸
≤0

∂τ1

∂k1︸︷︷︸
≤0︸ ︷︷ ︸

≥0

+
∂WW

∂τm

∂τm
∂k1︸︷︷︸
=0

≥ 0

D Proofs from Section 5

Proof of Lemma 7. 1. Smallest CU: The last union to form must be the smallest since,

by Lemma 5, the smallest CU entails the lowest level of welfare for its members. Note that

a symmetric CU structure is not an equilibrium outcome. This is also a simple consequence

of Lemma 5: if the last two CUs to form are of the same size, then they would be better off

by merging.

2. Second smallest CU: Again, the second smallest CU must be unique, because two

symmetric CUs would be better off by merging. Suppose that the second smallest CU has

less than k0 members. Then the members of this union would be better off by admitting

(at least) one more member.
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3. Number of equilibrium CUs: The second smallest CU which is the second-to-last to

form has at least k0 members and all the CUs that form before have strictly more members

than this CU. Thus there cannot be more than I(N
k0

) CUs in equilibrium where I(N
k0

) is the

next highest integer to N
k0

. The goal of this proof is to determine a lower bound for k0 in

order to get an upper bound for the number of equilibrium CUs.

Recall that k0 is the largest integer such that any size-k CU, k ≤ k0, becomes better off

by merging with a single-country CU, i.e. W (k, C)−W (k − 1, C ′) ≥ 0.

When γ = 0, for any k and N we have W (k, C) − W (k − 1, C ′) = 7
72
> 0 and k0 is

infinite. There will be only one CU of size N in equilibrium when γ = 0.

When, γ > 0, treating k as continuous, we want to solve for k0 such that

W (k, C)−W (k − 1, C ′) = 0

⇔ NS(k)−NS(k − 1)− (N − k)qO(k)2 + (N − k + 1)qO(k − 1)2 − qO(1)2 = 0 (D.1)

In order to solve for k0, we need to distinguish three cases:

a) k0 is such that a CU of size k0 is constrained by Article XXIV

If a size-k0 CU is constrained by Article XXIV then a size-(k0−1) must also be constrained by

Article XXIV. In this case, making use of (6), (7) and (8), together with τc(k) = τc(k−1) =

τ(1), (D.1) becomes
τ(1)

2Γ(0)2Γ(N)2
(ω2k

2 + ω1k + ω0) = 0 (D.2)

with

ω2 ≡ 6γ2τ(1) ≥ 0

ω1 ≡ − 2γ
{

4Γ(0) + τ(1)
[
(1 + γ)γN − 8 + 9γ − γ2

]}
≤ 0

ω0 ≡ 2Γ(0)Γ(2N + 4) + τ(1)
[
−(1− γ)γ2N2 − (1− γ)γ(4 + γ)N + Γ(0)(2− 11γ + 2γ2)

]
Substituting τ(1) into the ωi and solving (D.2), a second degree polynomial equation in k,

yields

k0 = fk0(N, γ)−
√
gk0(N, γ) (D.3)

where

fk0(N, γ) ≡ γ(3− γ)(6− γ)N + 32− 22γ + 19γ2 − γ3

6γ(2 + γ)

gk0(N, γ) ≡ θ2N
2 + θ1N + θ0

[6γ(2 + γ)]2

12



with

θ2 ≡ γ2(156− 276γ + 171γ2 − 24γ3 + γ4)

θ1 ≡ 2γ(240− 744γ + 632γ2 − 214γ3 + 25γ4 − γ5)

θ0 ≡ 352− 1696γ + 2084γ2 − 1068γ3 + 255γ4 − 26γ5 + γ6

The goal now is to show that k0 is a decreasing function of γ and so evaluating k0 at γ = 1

will give us a lower bound for k0 for any γ.

Lemma. For any N ≥ 6 and γ > 0, k0 is a decreasing function of γ.

Proof. We first look separately at fk0(N, γ) and gk0(N, γ). The first derivative of fk0(N, γ)

with respect to γ is negative.

dfk0
dγ

(N, γ) = −γ
2(36− 4γ − γ2)N + (2− γ)(32 + 48γ − 6γ2 − γ3)

6γ2(2 + γ)2
< 0

So fk0 is a decreasing function of γ. Furthermore,

dgk0
dγ

(N, γ) =
Φk0

18γ3(2 + γ)3

with

Φk0 ≡ φ2N
2 + φ1N + φ0

φ2 ≡ − γ3(12− 12γ + γ2)(36− 4γ − γ2) ≤ 0

φ1 ≡ − γ(2− γ)(240 + 480γ − 1136γ2 + 176γ3 + 13γ4 − 2γ5) Q 0

φ0 ≡ − (2− γ)(352− 320γ − 1432γ2 + 860γ3 − 92γ4 − 7γ5 + γ6) Q 0

The denominator of
dgk0
dγ

(N, γ) being positive, the derivative is of the same sign as its nu-

merator Φk0 . The numerator is a second degree polynomial in N with
d2Φk0
dN2 = 2φ2 ≤ 0 and

so the first derivative of Φk0 is a monotonically decreasing function of N with
dΦk0
dN

(4, γ) =

−γ(480 + 720γ + 704γ2 − 2352γ3 + 426γ4 + 47γ5 − 6γ6) ≤ 0. Hence, Φk0 is a decreasing

function of N for N ≥ 4. For N = 10, we have

Φk0(10, γ) = −(704 + 3808γ + 4656γ2 + 18832γ3 − 34164γ4 + 5778γ5 + 639γ6 − 81γ7) < 0

So for N ≥ 10,
dgk0
dγ

is negative. Let us now calculate the derivative of k0 with respect to γ

dk0

dγ
= f ′k0 −

g′k0
2
√
gk0

=
2
√
gk0f

′
k0
− g′k0

2
√
gk0

When g′k0 =
dgk0
dγ

is negative, we have 2
√
gk0f

′
k0

+ g′k0 < 0 and so dk0
dγ

will be of the opposite
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sign of 4gk0f
′2
k0
− g′2k0 = (2

√
gk0f

′
k0
− g′k0)(2

√
gk0f

′
k0

+ g′k0). To finish the proof that k0 is a

decreasing function of γ we thus need to determine the sign of 4gk0f
′2
k0
− g′2k0 .

4gk0f
′2
k0
− g′2k0 =

Xk0

108γ6(2 + γ)4

where

Xk0 ≡ χ4N
4 + χ3N

3 + χ2N
2 + χ1N + χ0

χ4 ≡ γ6(36− 4γ − γ2)2 ≥ 0

χ3 ≡ 2γ4(36− 4γ − γ2)(352− 512γ + 204γ2 − 36γ3 + 5γ4)

χ2 ≡ γ2(34048 + 54272γ − 304256γ2 + 282496γ3 − 98880γ4 + 13504γ5 − 264γ6 − 168γ7 + 23γ8)

χ1 ≡ 4γ(2− γ)(13440− 12992γ − 66816γ2 + 78576γ3 − 29008γ4 + 3984γ5 − 78γ6 − 42γ7 + 5γ8)

χ0 ≡ 2(2− γ)3(4928− 11424γ − 24192γ2 + 16208γ3 − 2864γ4 + 116γ5 + 22γ6 − 3γ7)

The denominator being positive, the expression is of the sign as its numerator Xk0 which

is a fourth degree polynomial in N . To sign this polynomial we differentiate it successively

with respect to N .
d4Xk0
dN4 = 24χ4 ≥ 0 and so the third derivative of Xk0 is an increasing

function of N .
d3Xk0
dN3 (6, γ) = 2γ4(36− 4γ − γ2)(352− 512γ + 636γ2 − 84γ3 − 7γ4) ≥ 0 and

so the third derivative is positive for any N ≥ 6 and the second derivative is increasing

with N .
d2Xk0
dN2 (6, γ) = 2γ2(34048 + 54272γ+ 151936γ2− 431744γ3 + 506496γ4− 106304γ5−

8040γ6 + 2136γ7 + 59γ8) ≥ 0 and so the second derivative is positive for any N ≥ 6 and

the first derivative is increasing with N .
dXk0
dN

(6, γ) = 8γ(13440 + 31360γ + 21088γ2 −
2256γ3 − 180232γ4 + 254216γ5 − 56118γ6 − 3207γ7 + 1070γ8 + 5γ9) ≥ 0 and so the first

derivative is positive for N ≥ 6 and Xk0 is an increasing function of N . Finally, Xk0(6, γ) =

2(39424 + 172032γ+ 112896γ2−124288γ3−402976γ4−682880γ5 + 1421712γ6−335560γ7−
15140γ8 + 6200γ9 − 75γ10) > 0 and so Xk0 is positive for any N ≥ 6 and γ > 0 and so

4gk0f
′2
k0
− g′2k0 > 0 and hence k0 is a decreasing function of γ for N ≥ 10.

For N < 10,
dgk0
dγ

changes sign with γ. When
dgk0
dγ
≤ 0, the above proof applies (for

N ≥ 6). When
dgk0
dγ

> 0, gk0 is an increasing function of γ and −√gk0 is a decreasing

function of γ. Hence k0 = fk0(N, γ)−
√
gk0(N, γ) is a decreasing function of γ.

We have therefore shown that, for any N ≥ 6 and γ > 0, k0 is a decreasing function of

γ, and so evaluating k0 at γ = 1 gives a lower bound for k0:

k0(γ = 1) =
1

18

[
10N + 28−

√
2(14N2 − 62N − 49)

]
≥ 5−

√
7

9
N

To finish the proof for N < 6, we check that k0(N, γ) > N for N = 1, 2 . . . 5. Hence we have

shown that, for any N and any γ, k0 ≥ 5−
√

7
9
N and so there will be at most four CUs in

equilibrium.
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Furthermore, we can note that k0(γ = 1) > N
3

for N ≤ 31 and so we know that for

N ≤ 31 there will be at most three CUs in equilibrium.

As k0 is a decreasing function of γ and k0(γ = 1) < N
3

for N > 31, there exists a

unique γ3 ∈ (0, 1) for which k0 = N
3

. This γ3 is a complicated function of N , but γ3 =
1
2
(13 −

√
129) ≈ 0.821092 is a lower bound for γ3, because k0(γ3) ≥ N

3
(with equality for

N = +∞). Hence we also know that for N > 31 and γ ∈ [0, 1
2
(13−

√
129)] there will be at

most three CUs in equilibrium.

b) k0 is such that a CU of size k0 is not constrained by Article XXIV, but a CU

of size k0 − 1 is constrained by Article XXIV

If this case occurs, we have Wu(k, C)−Wc(k− 1, C ′) ≥ Wc(k, C)−Wc(k− 1, C ′) and so the

derivations from case a) above provide also a lower bound for k0 is this case.

c) k0 is such that neither a CU of size k0 nor of size k0 − 1 are constrained by

Article XXIV

This case corresponds to the case without the Article XXIV constraint analyzed by Yi (1996)

who shows that there will be at most three CUs in equilibrium.

Proof of Proposition 4. We assume that the equilibrium CU structure consists of at most

two blocs: a bloc of size k which forms first and a bloc of size N − k. From Lemma 7 we

know that the two blocs will necessarily be asymmetric with the larger bloc forming first

and so we have k > N − k. (Note that we allow the small bloc to be empty (k = N) in

which case there is only one bloc in equilibrium.)

The aim of this proof is to determine which bloc will be bound by Article XXIV and

when. We already know that, for γ ≤ γN∞, CUs of any size are bound by Article XXIV so

both the small and the large CUs will be bound. If k < N , then the range of γ for which

both equilibrium CUs will be constrained will be larger. We also know that, as k > N
2

, the

large CU will not be constrained for γ > γN
2

. Hence both blocs will be constrained on a

subrange of (0, γN
2

).2

To determine exactly which bloc will be constrained and when, we need to determine

the equilibrium size of the two blocs. The large CU (the first bloc to form) is choosing its

size k to maximize its welfare knowing that the second bloc will be formed by the remaining

countries. The optimization problem is thus

argmax
k

W (k, {k,N − k})

To solve this optimization problem, we need to calculate the first derivative of the welfare

function of the large CU W (k, {k,N−k}) with respect to its size k. But the welfare function

2From Lemma 7 we know that for γ = 0 there will be only one CU in equilibrium and so Article XXIV
will have no hold.
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W (k, {k,N − k}) changes depending on which of the blocs is constrained. So to determine

the equilibrium size of the two blocs, we need to know whether they are constrained or

not. To solve this problem, we therefore have to determine the equilibrium size of the blocs

making assumptions on whether they are constrained or not, and then we have to check

that the obtained equilibrium sizes do not contradict our assumptions.

Hence the proof proceeds in three steps. First, we solve for the equilibrium size of the two

blocs assuming that they are both constrained and we determine the range of parameters

for which the obtained equilibrium sizes are indeed such that the two blocs are constrained.

Second, we solve for the equilibrium size of the two blocs assuming that only the small bloc

is constrained and we show that, on the remainder of the parameter range, the equilibrium

sizes are such that only the small bloc is constrained. Finally, to terminate the proof, we

solve for the equilibrium size of the two blocs assuming that neither of them is constrained

and we show that the equilibrium sizes are such that the small bloc would necessarily be

constrained. Hence we can conclude that the case in which neither bloc is constrained never

arises in equilibrium with Article XXIV.

1) Assume that both blocs are constrained by Article XXIV (CC):

Making use of (6), (7) and (8) with τc(k) = τc(N − k) = τ(1), we can calculate the first

derivative of the welfare function of the large bloc with respect to its size

dWcc(k, {k,N − k})
dk

=
2 + γ

2Γ(N)2D(1)2
[λ0(N, γ)− 2γλ1(N, γ)k] (D.4)

with

λ0(N, γ) ≡ Γ(0)(28− 20γ + 5γ2 + γ3) + 4γ(30− 29γ + 13γ2)N + γ2(34− 41γ + γ2)N2

λ1(N, γ) ≡ 64− 60γ + 32γ2 − γ3 + γ(22− 27γ + γ2)N

When γ = 0, the derivative is strictly positive and independent of k: dW (k,{k,N−k})
dk

= 7
72
> 0.

The optimal size of the large bloc is thus koptcc = N .

When 0 < γ ≤ γN
2

, λ0(N, γ) > 0 and λ1(N, γ) > 0 and from setting (D.4) equal to zero we

have

koptcc (N, γ) =
λ0(N, γ)

2γλ1(N, γ)
(D.5)

We can note that koptcc

N
is a monotonically decreasing function of N .

d

dN

[
koptcc

N
(N, γ)

]
= − λ2(N, γ)

2γN2λ1(N, γ)2
< 0
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with λ2(N, γ) ≡ ξ2N
2 + ξ1N + ξ0 where

ξ2 ≡ γ2(464− 1128γ + 784γ2 − 114γ3 − 21γ4 + γ5) ≥ 0 for γ ∈ [0, γN
2

]

ξ1 ≡ 2γΓ(0)(22− 27γ + γ2)(28− 20γ + 5γ2 + γ3) ≥ 0 for γ ∈ [0, γN
2

]

ξ0 ≡ Γ(0)(64− 60γ + 32γ2 − γ3)(28− 20γ + 5γ2 + γ3) > 0 for γ ∈ [0, γN
2

]

And so for any N , koptcc

N
≥ lim

N→∞

koptcc

N
=

34− 41γ + γ2

44− 54γ + 2γ2
≥ 17

22
. Hence, if the size of the large

bloc is koptcc , we know that the size of the small bloc is smaller than 5
22
N < k∗∗(N, 1) and so

the small bloc is necessarily constrained by Article XXIV.

The question now is whether the size of the large bloc koptcc (which we obtained assuming

that both CUs are bound by Article XXIV) is such that the large bloc is also constrained.

In other words, is koptcc the relevant solution for the equilibrium size of the large CU? We

show that this is the case for a subrange of γ. To show this we determine when koptcc ≤ k∗∗.

Define ∆k ≡ k∗∗ − koptcc . After simplifications we obtain

∆k(N, γ) =
δk(N, γ)

2γ(2 + γ)λ1(N, γ)
(D.6)

with

δk(N, γ) ≡ Γ(0)(200− 612γ + 562γ2 − 263γ3 + 37γ4 − γ5)

+ 2γ(160− 568γ + 592γ2 − 266γ3 + 36γ4 − γ5)N

γ2(64− 224γ + 202γ2 − 33γ3 + γ4)N2

∆k(N, γ) is a continuous function of γ for γ ∈ (0, γN
2

]. It is easy to show that it is a

monotonically decreasing function of γ on this range:

d∆k(N, γ)

dγ
= − µk(N, γ)

2γ2(2 + γ)2λ1(N, γ)2
< 0

where µk(N, γ) ≡ µ0 + µ1N + µ2N
2 + µ3N

3 with

µ0 ≡ 51200− 44800γ − 137664γ2 + 315136γ3 − 313552γ4 + 167568γ5 − 46388γ6 + 2712γ7

+ 821γ8 − 60γ9 + γ10 > 0 for γ ∈ (0, γN
2

]

µ1 ≡ γ(35200 + 26432γ − 249408γ2 + 395968γ3 − 288040γ4 + 102772γ5 − 8240γ6 − 2146γ7

+ 170γ8 − 3γ9) > 0 for γ ∈ (0, γN
2

]

µ2 ≡ γ2(5888 + 36864γ − 129600γ2 + 148256γ3 − 73440γ4 + 8264γ5 + 1852γ6 − 160γ7

+ 3γ8) > 0 for γ ∈ (0, γN
2

]

µ3 ≡ γ4(7808− 20976γ + 16612γ2 − 2736γ3 − 527γ4 + 50γ5 − γ6) > 0 for γ ∈ (0, γN
2

]
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Furthermore, we have

∆k(N,
466

1000
) =

642115906555069N2 − 20005524915931138N + 286625284171126069

287289000(561247837N + 5360974663)

> 0 for N ≥ 1

∆k(N,
476

1000
) = − 20100163461469N2 + 720384736178562N − 3547369240077531

36830500(69723409N + 665352841)

< 0 for N ≥ 5

So by the intermediate value theorem, we know that there exists a unique γ̂(N) ∈
(

466
1000

, 476
1000

)
such that ∆k[N, γ̂(N)] = 0. Hence for γ ≤ γ̂(N) we have koptcc ≤ k∗∗ and for γ > γ̂(N) we

have koptcc > k∗∗. Therefore for γ ≤ γ̂(N) both CUs are well constrained by Article XXIV

and koptcc is the relevant solution for the equilibrium size of the large CU on this interval.3

2) Assume that only the small bloc is constrained by Article XXIV (UC):

The solution koptcc obtained above assuming that both CUs are constrained by Article XXIV

is such that for γ > γ̂(N) the CU of size koptcc would not be constrained by Article XXIV.

Therefore, for γ > γ̂(N), koptcc cannot be the relevant solution for the size of the large CU.

We now assume that only the small CU is constrained by Article XXIV and solve for the

equilibrium size of the large union koptuc . In the remainder of the proof we are assuming

γ > γ̂(N). Given that γ̂(N) > 0.466, we prove all the results for γ > 0.466 which proves

them for γ > γ̂(N).

Again making use of (6), (7) and (8), but now with the large bloc imposing τc(k) =

τ(k) ≤ τ(1) and the small bloc imposing τc(N − k) = τ(1), we can calculate the first

derivative of the welfare function of the large bloc with respect to its size

dWuc(k, {k,N − k})
dk

=
Huc(k,N, γ)

2Γ(N)2D(1)2D(k)2
(D.7)

with

Huc(k,N, γ) ≡ η6(N, γ)k6 + η5(N, γ)k5 + η4(N, γ)k4 + η3(N, γ)k3 + η2(N, γ)k2 + η1(N, γ)k + η0

and

η6(N, γ) ≡ − 24γ6(2 + γ)2

3For N ≥ 9, we can even refine the range of γ̂(N) because we have

∆k(N,
470

1000
) = −7855687771N2 + 1946145300258N − 16803834658029

2321800(4479523N + 42764977)
< 0 for N ≥ 9

and so we know that γ̂(N) ∈ [ 466
1000 ,

470
1000 ].
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η5(N, γ) ≡ − 8γ5(2 + γ)
[
γ(10− 21γ − 3γ2)N + 80− 44γ + 4γ2 + 3γ3

]
η4(N, γ) ≡ 2γ4

[
−γ2(28− 188γ + 143γ2 + 78γ3 + 3γ4)N2

+ 2γ(−448 + 1032γ − 228γ2 − 134γ3 + 53γ4 + 3γ5)N

−3648 + 3648γ − 912γ2 − 416γ3 + 260γ4 − 28γ5 − 3γ6
]

η3(N, γ) ≡ 4γ3
[
γ3(1− γ)(4 + 28γ − 55γ2 − 9γ3)N3

− γ2(144− 992γ + 1272γ2 − 420γ3 − 15γ4 + 23γ5)N2

+ γ(−2128 + 6496γ − 5736γ2 + 1904γ3 − 5γ4 − 130γ5 + 19γ6)N

+(2− γ)(−2880 + 4048γ − 2320γ2 + 408γ3 + 132γ4 − 59γ5 + 5γ6)
]

η2(N, γ) ≡ 2γ2
[
γ4(1− γ)(52− 88γ + 23γ2 + 15γ3)N4

+ 4γ3(136− 254γ + 31γ2 + 113γ3 − 46γ4 + 4γ5)N3

+ γ2(752 + 2624γ − 7900γ2 + 6612γ3 − 2166γ4 + 156γ5 + 35γ6)N2

2γ(2− γ)(−1872 + 6696γ − 7444γ2 + 3742γ3 − 736γ4 − 53γ5 + 29γ6)N

2(2− γ)2(−2432 + 4176γ − 3256γ2 + 1184γ3 − 112γ4 − 49γ5 + 11γ6)
]

η1(N, γ) ≡ 4γ(2− γ)2
[
γ4(52− 88γ + 23γ2 + 15γ3)N4

+ γ3(508− 788γ + 244γ2 + 84γ3 − 43γ4)N3

+ 8γ2(3− γ)(2 + γ)(33− 49γ + 26γ2 − 5γ3)N2

+ γ(1264− 720γ − 1008γ2 + 1452γ3 − 731γ4 + 158γ5 − 11γ6)N

−(2− γ)(3− γ)(160− 304γ + 288γ2 − 120γ3 + 22γ4 + γ5)
]

η0(N, γ) ≡ (2− γ)2
[
γ4(272− 536γ + 215γ2 + 53γ3 − 30γ4)N4

+ 4γ3(648− 1286γ + 747γ2 − 8γ3 − 115γ4 + 26γ5)N3

+ 2γ2(4328− 8824γ + 6382γ2 − 1076γ3 − 901γ4 + 471γ5 − 66γ6)N2

+ 4γ(2− γ)(2 + γ)(3− γ)(236− 428γ + 335γ2 − 125γ3 + 18γ4)N

+(2− γ)2(3− γ)(336− 352γ + 40γ2 + 128γ3 − 83γ4 + 14γ5)
]

The optimal size of the large CU koptuc is given by setting (D.7) equal to zero. It is hard to

find a closed-form solution of this polynomial equation of degree 6 in k, we can however

provide a lower bound for koptuc by studying further the derivative of the welfare function

(D.7).

The small CU being constrained by Article XXIV, we are interested in the variations of

the derivative (D.7) for N − k ≤ k∗∗ ⇔ k ≥ N − k∗∗. We show that the derivative (D.7) is

strictly positive for k ∈ [N − k∗∗, 78
100
N ] and so we will have shown that koptuc ≥ 78

100
N .

The denominator of the derivative (D.7) is strictly positive and so the derivative has the

same sign as its numerator Huc(k,N, γ).
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Lemma. Huc(k,N, γ) changes sign only once in the interval [N − k∗∗, N ]. It is initially an

increasing function of k and then it becomes a decreasing function with Huc(N−k∗∗, N, γ) > 0

and Huc(N,N, γ) < 0.

Proof. Huc(k,N, γ) is a sixth degree polynomial in k. To determine the variations and the

sign of Huc we differentiate successively with respect to k. The sixth derivative of Huc with

respect to k is

∂6Huc

∂k6
(k,N, γ) = −17280γ6(2 + γ)2 < 0 for γ ≥ 0.466

And so the fifth derivative is a decreasing function of k. Evaluating the fifth derivative at

the lower bound of the interval of interest k ∈ [N − k∗∗, N ] gives

∂5Huc

∂k5
(N − k∗∗, N, γ) = 1920γ5(2 + γ)

[
γ (4− 21γ + 6γ2)︸ ︷︷ ︸
≤0 for γ≥0.466

N − 2 (2 + 25γ − 17γ2 + 3γ3)︸ ︷︷ ︸
>0 for γ∈[0,1]

]

So ∂5Huc
∂k5

(N − k∗∗, N, γ) < 0 for γ ≥ 0.466 and so the fifth derivative is negative for any

k ∈ [N − k∗∗, N ] and so the fourth derivative is decreasing on this range. Evaluating the

fourth derivative at the lower bound yields

∂4Huc

∂k4
(N − k∗∗, N, γ) = − 96γ4

γ2 (4− 164γ + 509γ2 − 276γ3 + 39γ4)︸ ︷︷ ︸
>0 for γ≥0.466

N2

+ 2γ (−16− 56γ + 1204γ2 − 1108γ3 + 361γ4 − 39γ5)︸ ︷︷ ︸
>0 for γ≥0.466

N

64 + 576γ + 2216γ2 − 3552γ3 + 1890γ4 − 446γ5 + 39γ6︸ ︷︷ ︸
>0 for γ≥0.466

 < 0

The fourth derivative is decreasing with k and negative at the lower bound of the interval

considered and so it is negative on the entire interval k ∈ [N − k∗∗, N ] and so the third

derivative is decreasing on this range. Evaluating the third derivative at lower bound N−k∗∗

is inconclusive as it can be either positive or negative depending on the parameters. However,

evaluating the third derivative at the upper bound the upper bound of the interval (k = N)

yields
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∂3Huc

∂k3
(N,N, γ) = 24γ3

γ3 (−932 + 560γ + 51γ2 − 50γ3 + 3γ4)︸ ︷︷ ︸
<0 for γ≥0.466

N3

−γ2(5136− 5280γ + 1464γ2 + 316γ3 − 167γ4 + 11γ5)︸ ︷︷ ︸
<0 for γ≥0.466

N2

+ γ(−9424 + 13792γ − 7560γ2 + 1072γ3 + 515γ4 − 186γ5 + 13γ6)︸ ︷︷ ︸
<0 for γ≥0.466

N

−(2− γ)(2880− 4048γ + 2320γ2 − 408γ3 − 132γ4 + 59γ5 − 5γ6)︸ ︷︷ ︸
<0 for γ≥0.466

 < 0

Hence we know that the second derivative is either monotonically decreasing or initially in-

creasing and then decreasing function for k ∈ [N−k∗∗, N ]. Evaluating the second derivative

at the upper bound k = N yields

∂2Huc

∂k2
(N,N, γ) = 4γ2

γ4 (−1612 + 1692γ − 345γ2 − 80γ3 + 21γ4)︸ ︷︷ ︸
<0 for γ≥0.466

N4

−2γ3(6048− 8820γ + 4402γ2 − 482γ3 − 211γ4 + 43γ5)︸ ︷︷ ︸
<0 for γ≥0.466

N3

+ γ2 (−33904 + 63488γ − 47788γ2 + 15540γ3 − 636γ4 − 792γ5 + 131γ6)︸ ︷︷ ︸
<0 for γ≥0.466

N2

+ 4γ(2− γ) (−5256 + 9420γ − 7202γ2 + 2483γ3 − 170γ4 − 115γ5 + 22γ6)︸ ︷︷ ︸
<0 for γ≥0.466

N

2(2− γ)2 (−2432 + 4176γ − 3256γ2 + 1184γ3 − 112γ4 − 49γ5 + 11γ6)︸ ︷︷ ︸
<0 for γ≥0.466

 < 0

So the second derivative is negative at k = N . At k = N − k∗∗, the second derivative can

be either positive or negative depending on the parameters. Furthermore, we show that at

k = N − k∗∗, the second derivative is greater than the third derivative:

∂2Huc

∂k2
(N − k∗∗, N, γ)− ∂3Huc

∂k3
(N − k∗∗, N, γ) =

γ2

(2 + γ)2

[
ν4N

4 + ν3N
3 + ν2N

2 + ν1N + ν0

]
with

ν4 ≡ γ4(848− 2848γ + 5144γ2 + 2328γ3 − 17867γ4 + 20080γ5 − 9082γ6 + 1776γ7 − 123γ8)
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ν3 ≡ 4γ3(2112− 5856γ + 14944γ2 − 16968γ3 − 18000γ4 + 53844γ5 − 42587γ6 + 14649γ7

− 2245γ8 + 123γ9)

ν2 ≡ 2γ2(16384− 40192γ + 82656γ2 − 202912γ3 + 139360γ4 + 276576γ5 − 432602γ6 + 242446γ7

− 65015γ8 + 8142γ9 − 369γ10)

ν1 ≡ 4γ(13312− 37248γ + 46208γ2 − 131040γ3 + 312128γ4 − 17544γ5 − 354296γ6 + 330878γ7

− 138832γ8 + 30150γ9 − 3183γ10 + 123γ11)

ν0 ≡ (2− γ)(14336− 46080γ + 43520γ2 − 13568γ3 + 467328γ4 − 200256γ5 − 325568γ6 + 358112γ7

− 154160γ8 + 33272γ9 − 3406γ10 + 123γ11)

All the polynomial functions νi are positive for γ ≥ 0.466 and so we have ∂2Huc
∂k2

(N −
k∗∗, N, γ) ≥ ∂3Huc

∂k3
(N − k∗∗, N, γ). Thus when the third derivative is positive at N − k∗∗,

the second derivative is also necessarily positive at this point. Hence we know that the

second derivative is either monotonically decreasing and negative on the whole interval

[N − k∗∗, N ], or it is monotonically decreasing taking initially positive values and then

negative values, or it is initially increasing and positive and then decreasing and negative

for k = N . Consequently, the first derivative is either monotonically decreasing or initially

increasing and then decreasing. We now sign the first derivative at the bounds of the interval

[N − k∗∗, N ]. The first derivative is negative at the upper bound k = N

∂Huc

∂k
(N,N, γ) = − 4γ(3− γ)Γ(N)2

[
2γ3(2− γ)(7 + γ)(4− 3γ)N3

+ 2γ2 (288− 404γ + 202γ2 − 26γ3 − 7γ4)︸ ︷︷ ︸
>0 for γ≥0.466

N2

+ γ (880− 1536γ + 1216γ2 − 436γ3 + 49γ4 + 9γ5)︸ ︷︷ ︸
>0 for γ≥0.466

N

(2− γ) (160− 304γ + 288γ2 − 120γ3 + 22γ4 + γ5)︸ ︷︷ ︸
>0 for γ≥0.466

]
< 0

The first derivative is positive at the lower bound k = N − k∗∗ for N ≥ 5

∂Huc

∂k
(N − k∗∗, N, γ) =

γΓ(N)

(2 + γ)3

[
ι4N

4 + ι3N
3 + ι2N

2 + ι1N + ι0

]
with
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ι4 ≡ γ4(2− γ)(3− γ) (2− 7γ + γ2)︸ ︷︷ ︸
<0 for γ≥0.466

(−64 + 84γ − 92γ2 + 51γ3 + 67γ4 − 93γ5 + 15γ6)︸ ︷︷ ︸
<0 for γ≥0.466

> 0

ι3 ≡ γ3(−3392 + 39872γ − 84848γ2 + 110032γ3 − 104396γ4 + 29660γ5 + 60651γ6 − 75039γ7

+ 37821γ8 − 9713γ9 + 1228γ10 − 60γ11) > 0 for γ ≥ 0.466

ι2 ≡ γ2(7168 + 133248γ − 325312γ2 + 427296γ3 − 510288γ4 + 307896γ5 + 113772γ6 − 320946γ7

+ 232453γ8 − 88084γ9 + 18621γ10 − 2046γ11 + 90γ12)

ι1 ≡ γ(2− γ)(24576 + 99328γ − 237824γ2 + 233088γ3 − 364256γ4 + 256688γ5 + 60064γ6

− 218392γ7 + 159374γ8 − 60163γ9 + 12655γ10 − 1380γ11 + 60γ12)

ι0 ≡ (2− γ)2(13312 + 27136γ − 73472γ2 + 32896γ3 − 98240γ4 + 80192γ5 + 11200γ6 − 56056γ7

+ 40968γ8 − 15390γ9 + 3223γ10 − 349γ11 + 15γ12)

The polynomial functions ι4 and ι3 are positive for γ ≥ 0.466 while the polynomial functions

ι2, ι1 and ι0 change sign on γ ∈ [0.466, 1] (they become negative for γ close to 1). Easy

successive differentiation with respect to N of ι4N
4 + ι3N

3 + ι2N
2 + ι1N + ι0 shows however

that ∂Huc
∂k

(N − k∗∗, N, γ) > 06 for N ≥ 5.

Hence we know that the numerator the of derivative of welfare Huc(k,N, γ) is an initially

increasing and then decreasing function of k in the interval [N − k∗∗, N ]. Let us now sign

the numerator at the bounds of this interval. At the lower bound k = N − k∗∗ we have

Huc(N − k∗∗, N, γ) =
Γ(N)2

2(2 + γ)3

[
υ4N

4 + υ3N
3 + υ2N

2 + υ1N + υ0

]
with

υ4 ≡ γ4(1− γ)(3− γ)(2− 7γ + γ2)2(32− 32γ + 24γ2 − 28γ3 + 18γ4 − 3γ5)

υ3 ≡ 2γ3(3− γ)(2− 7γ + γ2)(−64− 1376γ + 3280γ2 − 3344γ3 + 2940γ4 − 2674γ5 + 1661γ6

− 581γ7 + 98γ8 − 6γ9)

υ2 ≡ 2γ2(−8704 + 21248γ + 128928γ2 − 408048γ3 + 547696γ4 − 533016γ5 + 478074γ6

− 368855γ7 + 209438γ8 − 80732γ9 + 20168γ10 − 3080γ11 + 258γ12 − 9γ13)

υ1 ≡ 2γ(2− γ)(−10752 + 54144γ + 63616γ2 − 283296γ3 + 359360γ4 − 338872γ5 + 309960γ6

− 245574γ7 + 141350γ8 − 54800γ9 + 13717γ10 − 2091γ11 + 174γ12 − 6γ13)

υ0 ≡ (2− γ)2(−6400 + 55168γ + 18496γ2 − 157088γ3 + 172528γ4 − 158968γ5 + 151676γ6

− 123126γ7 + 71490γ8 − 27836γ9 + 6986γ10 − 1064γ11 + 88γ12 − 3γ13)

All the coefficients υi are positive for γ ≥ 0.466 and so the numerator Huc(N−k∗∗, N, γ) > 0.
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At the upper bound k = N we have

Huc(N,N, γ) = − (3− γ)Γ(N)2
[
ῡ4N

4 + ῡ3N
3 + ῡ2N

2 + ῡ1N + ῡ0

]
with

ῡ4 ≡ 4γ4(4− 3γ)2 > 0 for γ ≥ 0.466

ῡ3 ≡ 4γ3(10− γ)(4− 3γ)(2− 2γ + γ2) > 0 for γ ≥ 0.466

ῡ2 ≡ γ2(160− 640γ + 1220γ2 − 972γ3 + 343γ4 − 38γ5) > 0 for γ ≥ 0.466

ῡ1 ≡ 2γ(2− γ)(4− γ)(−72 + 52γ + 46γ2 − 59γ3 + 20γ4) < 0 for γ ≥ 0.466

ῡ0 ≡ − (2− γ)2(336− 352γ + 40γ2 + 128γ3 − 83γ4 + 14γ5) < 0 for γ ≥ 0.466

The coefficients ῡ4, ῡ3 and ῡ2 are strictly positive for γ ≥ 0.466 while ῡ1 and ῡ0 are negative.

Easy successive differentiation with respect to N of ῡ4N
4 + ῡ3N

3 + ῡ2N
2 + ῡ1N + ῡ0 shows

that Huc(N,N, γ) < 0 for N ≥ 5 and γ ≥ 0.466.

Hence we know that Huc(k,N, γ) changes sign only once in the interval [N − k∗∗, N ]. It

is initially positive and increasing function and then it becomes a decreasing function and

negative.

The Lemma above helps up to determine a lower bound koptuc for which Huc(k
opt
uc , N, γ) = 0.

By showing that Huc(k,N, γ) is positive at k = 78
100
N we will have shown that koptuc ≥ 78

100
N .

Huc(
78

100
N,N, γ) =

Ξ̃(N, γ)

1953125000
> 0 for γ > 0.466

where Ξ̃(N, γ) ≡ ξ̃6N
6 + ξ̃5N

5 + ξ̃4N
4 + ξ̃3N

3 + ξ̃2N
2 + ξ̃1N + ξ̃0 with

ξ̃6 ≡ 1521γ6(−22697792 + 85616608γ − 91674048γ2 + 34374100γ3 − 4351875γ4)

≥ 0 for γ ∈ [0.466, 1]

ξ̃5 ≡ 1950γ5(4696640 + 446727728γ − 972099424γ2 + 752546940γ3 − 239698898γ4

+ 27095175γ5) > 0 for γ ∈ [0.466, 1]

ξ̃4 ≡ 625γ4(5008964032− 3693184832γ − 10736486592γ2 + 17851076144γ3 − 10604004840γ4

+ 2793891652γ5 − 274146723γ6) > 0 for γ ∈ [0.466, 1]

ξ̃3 ≡ 62500γ3Γ(0)(157675680− 214745888γ − 37216280γ2 + 225886252γ3 − 159352692γ4

+ 45324529γ5 − 4647955γ6) > 0 for γ ∈ [0.466, 1]

ξ̃2 ≡ 3125000γ2Γ(0)2(4175728− 6082304γ + 1059524γ2 + 3287264γ3 − 2722052γ4

+ 822321γ5 − 87219γ6) > 0 for γ ∈ [0.466, 1]
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ξ̃1 ≡ 156250000γΓ(0)3(3− γ)(17360− 19144γ + 868γ2 + 8930γ3 − 5308γ4 + 861γ5)

> 0 for γ ∈ [0.466, 1]

ξ̃0 ≡ 1953125000Γ(0)4(3− γ)(336− 352γ + 40γ2 + 128γ3 − 83γ4 + 14γ5) > 0 for γ ∈ [0.466, 1]

The derivative of welfare dWuc

dk
is thus strictly positive for any k between N − k∗∗ and 78

100
N ,

welfare is strictly increasing with k and so we must have koptuc ≥ 78
100
N .

Having determined this lower bound on the size of the large CU, we now need to check

that this size is such that the small union would be constrained and the large would not.

If the large CU is larger than 78
100
N , then the small CU must be smaller than 22

100
N . As

22
100
N < k∗∗(N, 1), the small union is well constrained by Article XXIV.

We now need to check that the large union is larger than k∗∗. Recall that k∗∗ is a

monotonically decreasing function of γ and notice that k∗∗(N, 1
2
) = 3(N+1)

4
< 78

100
N so for

γ ≥ 1
2
, by showing that koptuc ≥ 78

100
N , we have already shown that koptuc ≥ k∗∗. To finish the

proof, we now need to show that koptuc ≥ k∗∗ for γ ∈ (γ̂(N), 1
2
). Evaluating the first derivative

of welfare (D.7) at k∗∗ yields

dWuc

dk
(k∗∗, {k∗∗, N − k∗∗}) = − δk(N, γ)

2Γ(N)2D(1)2
(D.8)

From the study of (D.6) above, we know that δk(N, γ) < 0 for γ ∈ (γ̂(N), γN
2

) and so from

(D.8) we have that the derivative of welfare is strictly positive at k∗∗. Hence the welfare

function is increasing for k between N − k∗∗ and k∗∗ and so koptuc must be greater than k∗∗

and so the large CU cannot be constrained by Article XXIV.

3) Assume that no bloc is constrained by Article XXIV (UU):

As a final check, we assume that neither of the two blocs is constrained by Article XXIV

and we show that this assumption leads to a contradiction.

Making use of (6), (7) and (8), but now with the large bloc imposing τc(k) = τ(k) and

the small bloc imposing τc(N − k) = τ(N − k), we can again calculate the first derivative of

the welfare function of the large bloc with respect to its size

dWuu(k, {k,N − k})
dk

=
Huu(k,N, γ)

2D(k)2D(N − k)3
(D.9)

with

Huu(k,N, γ) ≡ η̃8(N, γ)k8 + η̃7(N, γ)k7 + η̃6(N, γ)k6 + η̃5(N, γ)k5 + η̃4(N, γ)k4

+ η̃3(N, γ)k3 + η̃2(N, γ)k2 + η̃1(N, γ)k + η̃0

and
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η̃8(N, γ) ≡ 32(1− γ)(2− γ)γ8

η̃7(N, γ) ≡ − 16γ7
[
γ(1− γ)(25− 13γ)N + (2− γ)(8− 17γ + 5γ2)

]
η̃6(N, γ) ≡ 8γ6

[
γ2(1− γ)(142− 95γ + 16γ2 − 3γ3)N2

+ 2γ(2− γ)(26− 96γ + 63γ2 − 20γ3 + 3γ4)N

−(2− γ)2(49− 3γ − 40γ2 + 21γ3 − 3γ4)
]

η̃5(N, γ) ≡ − 4γ5
[
γ3(1− γ)(453− 393γ + 123γ2 − 23γ3)N3

+ γ2(2− γ)(64− 883γ + 883γ2 − 357γ3 + 53γ4)N2

− γ(2− γ)2(647− 86γ − 502γ2 + 266γ3 − 37γ4)N

−(2− γ)3(292− 111γ − 97γ2 + 55γ3 − 7γ4)
]

η̃4(N, γ) ≡ 2γ4
[
2γ4(1− γ)(415− 439γ + 177γ2 − 33γ3)N4

− 4γ3(2− γ)(147 + 336γ − 534γ2 + 248γ3 − 37γ4)N3

− γ2(2− γ)2(3905− 2775γ − 313γ2 + 507γ3 − 76γ4)N2

− 2γ(2− γ)3(1606− 1679γ + 656γ2 − 133γ3 + 14γ4)N

−(2− γ)4(682− 1092γ + 693γ2 − 201γ3 + 22γ4)
]

η̃3(N, γ) ≡ γ3
[
−4γ5(1− γ)(203− 247γ + 113γ2 − 21γ3)N5

+ 4γ4(2− γ)(688− 411γ − 177γ2 + 167γ3 − 27γ4)N4

+ γ3(2− γ)2(12309− 15884γ + 7766γ2 − 1916γ3 + 221γ4)N3

+ γ2(2− γ)3(14396− 22735γ + 14361γ2 − 4253γ3 + 487γ4)N2

+ γ(2− γ)4(7040− 13540γ + 9359γ2 − 2774γ3 + 299γ4)N

+(2− γ)5(1552− 3056γ + 2040γ2 − 569γ3 + 57γ4)
]

η̃2(N, γ) ≡ γ2
[
4γ6(1− γ)(41− 55γ + 27γ2 − 5γ3)N6

− 8γ5(2− γ)(283− 409γ + 229γ2 − 63γ3 + 8γ4)N5

− γ4(2− γ)2(9023− 15320γ + 10214γ2 − 3208γ3 + 395γ4)N4

− 2γ3(2− γ)3(5881− 11367γ + 8157γ2 − 2557γ3 + 294γ4)N3

− γ2(2− γ)4(6133− 14034γ + 10385γ2 − 3134γ3 + 334γ4)N2

− 2γ(2− γ)5(284− 1065γ + 830γ2 − 235γ3 + 22γ4)N

+(2− γ)6(3− γ)(174− 204γ + 87γ2 − 13γ3)
]
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η̃1(N, γ) ≡ γ(2− γ)2
[
8g6(41− 55g + 27g2 − 5g3)N6

+ γ5(1915− 3948γ + 3022γ2 − 1020γ3 + 127γ4)N5

+ γ4(2− γ)(24− 1791γ + 1997γ2 − 721γ3 + 83γ4)N4

− 2γ3(2− γ)2(3094− 4257γ + 2360γ2 − 634γ3 + 69γ4)N3

− 2γ2(2− γ)3(4778− 7414γ + 4413γ2 − 1187γ3 + 121γ4)N2

− γ(2− γ)4(3− γ)(2015− 2435γ + 985γ2 − 133γ3)N

−(2− γ)5(3− γ)2(13− 5γ)(12− 5γ)
]

η̃0(N, γ) ≡ (2− γ)2
[
γ6(413− 718γ + 488γ2 − 154γ3 + 19γ4)N6

+ 2γ5(2− γ)(1251− 2152γ + 1424γ2 − 428γ3 + 49γ4)N5

+ γ4(2− γ)2(6261− 10536γ + 6716γ2 − 1914γ3 + 205γ4)N4

+ 4γ3(2− γ)3(2038− 3313γ + 2018γ2 − 545γ3 + 55γ4)N3

+ γ2(2− γ)4(3− γ)(1883− 2299γ + 931γ2 − 125γ3)N2

+ 2γ(2− γ)5(3− γ)2(103− 84γ + 17γ2)N

+(2− γ)6(3− γ)3(7− 3γ)
]

As in the (UC) case above, the optimal size of the large CU koptuu is given by setting (D.9)

equal to zero. It is again difficult to find a closed-form solution to this polynomial equation

of degree 8 in k, but we can again provide a lower bound for koptuu by studying further the

derivative of the welfare function (D.9).

Tedious derivations (multiple successive differentiation as in the (UC) case above) show

that the numerator of the derivative of welfare Huu is a decreasing function of k for k ∈
[N

2
, 9N

10
]. Furthermore, we have

Huu(
88

100
N,N, γ) =

Ξ̂(N, γ)

152587890625
> 0 for γ > 0.466

where Ξ̂(N, γ) ≡ ξ̂8N
8 + ξ̂7N

7 + ξ̂6N
6 + ξ̂5N

5 + ξ̂4N
4 + ξ̂3N

3 + ξ̂2N
2 + ξ̂1N + ξ̂0 with

ξ̂8 ≡ 52272γ8(1− γ)(−543 + 14509γ − 18125γ2 + 4375γ3)

ξ̂7 ≡ 118800γ7(2− γ)(−13032 + 333843γ − 575745γ2 + 304625γ3 − 49475γ4)

ξ̂6 ≡ 5625γ6(2− γ)2(−23581677 + 135143194γ − 155087180γ2 + 64307342γ3 − 8887231γ4)

ξ̂5 ≡ 31250γ5(2− γ)3(−53486337 + 122581771γ − 97377033γ2 + 32422545γ3 − 3856298γ4)

ξ̂4 ≡ 390625γ4(2− γ)4(17868441− 36385396γ + 26161984γ2 − 8014138γ3 + 892161γ4)

ξ̂3 ≡ 39062500γ3(2− γ)5(1408224− 2486197γ + 1600855γ2 − 447928γ3 + 46134γ4)

ξ̂2 ≡ 244140625γ2(2− γ)6(3− γ)(152841− 196361γ + 82233γ2 − 11267γ3)
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ξ̂1 ≡ 12207031250γ(2− γ)7(3− γ)2(859− 725γ + 150γ2)

ξ̂0 ≡ 152587890625(2− γ)8(3− γ)3(7− 3γ)

All the coefficients ξ̂i are positive for γ ∈ [0.466, 1] except ξ̂5 which changes signs and so

straightforward successive differentiation with respect to N shows that Huu(
88
100
N,N, γ) > 0

for γ > 0.466 and N ≥ 4. Hence the welfare function Wuu is strictly increasing for k ∈
[N

2
, 88N

100
] and koptuu must be greater or equal to 88

100
N . If the large CU is larger than 88

100
N , then

the small CU must be smaller than 12
100
N . As 12

100
N < k∗∗(N, 1), this leads to a contradiction:

a union smaller than k∗∗(N, 1) is necessarily constrained by Article XXIV. Therefore, in a

two-bloc equilibrium, the small bloc is always constrained by Article XXIV.

Proof of Proposition 5. We assume that the equilibrium CU structure consists of at most

two blocs: a bloc of size k which forms first and a bloc of size N − k. From Lemma 7 we

know that the two blocs will necessarily be asymmetric with the larger bloc forming first

and so we have k > N − k. The aim of this proof is to determine how does the presence of

the Article XXIV constraint affect the large CU’s choice of its size.

1. Article XXIV binding on the large CU leads to a more asymmetric equi-

librium CU structure: the goal here is to determine how a change in the CET of the

large CU affects the large CU’s willingness to accept more or less members, i.e. we want to

determine the sign of
∂

∂τL

∂WL(k)

∂k

∣∣∣∣
τL=τ(1),koptcc

where τL is the external tariff imposed by the large union and WL is the welfare of a member

country of the large union. We are interested in the sign of this second derivative at the

point where the large union is bound by Article XXIV τL = τ(1) (because we want to see

the local impact of removing Article XXIV and raising τL) and where the large union has

chosen its size optimally koptcc (case where both unions are constrained by Article XXIV). By

the theorem of Schwarz (also known as Young’s Theorem), we have ∂
∂τL

∂WL(k)
dk

= ∂
∂k

∂WL(k)
∂τL

.

∂WL(k)

∂τL
=

N − k
Γ(0)2Γ(N)2

[Γ(0)Γ(2k)−D(k)τL]

and

∂2WL(k)

∂k∂τL
=

1

Γ(0)2Γ(N)2

{
6γτLk

2

+
{
τL
[
2γΓ(0)Γ(N)− 6γ2N + 4γΓ(0)

]
− 4γΓ(0)

}
k (D.10)

+ τL
{

Γ(0)Γ(N) [Γ(0)− γN ] + γ2N2 + Γ(0)2 − 2γΓ(0)N
}

+ Γ(0) [Γ(2N)− 2Γ(0)]

}
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Evaluating (D.10) at τL = τ(1) and k = koptcc given by (D.5) yields

∂

∂τL

∂WL(k)

∂k

∣∣∣∣
τL=τ(1),k=koptcc

=
fL(N, γ)

2Γ(0)Γ(N)2D(1)λ1(N, γ)2

with

fL(N, γ) ≡ fL4 (γ)N4 + fL3 (γ)N3 + fL2 (γ)N2 + fL1 (γ)N + fL0 (γ)

fL4 (γ) ≡ − γ4(2216− 8532γ + 11422γ2 − 5979γ3 + 896γ4 − 27γ5)

fL3 (γ) ≡ − 2γ3(8896− 38536γ + 63932γ2 − 51294γ3 + 19601γ4 − 2552γ5 + 73γ6)

fL2 (γ) ≡ − 8γ2(6480− 33072γ + 65152γ2 − 66560γ3 + 37847γ4 − 11297γ5 + 1293γ6 − 35γ7)

fL1 (γ) ≡ − 2γ(34048− 204608γ + 462048γ2 − 562784γ3 + 409136γ4 − 180036γ5 + 44102γ6

− 4492γ7 + 115γ8)

fL0 (γ) ≡ − Γ(0)(19264− 109696γ + 250320γ2 − 298784γ3 + 219532γ4 − 98072γ5 + 25663γ6

− 2710γ7 + 69γ8)

From Proposition 4 we know that both CUs are bound only for γ ∈ [0, γ̂(N)]. Given that

γ̂(N) < 0.476, for the remainder of the proof we will consider γ ∈ [0, 0.476] which will cover

the range of interest.

The coefficients fL4 (γ), fL3 (γ), fL2 (γ) and fL0 (γ) (of the fourth degree polynomial in N)

are all negative for γ ∈ [0, 0.476], but fL1 (γ) changes sign for γ ∈ [0, 0.476]. To sign fL(N, γ)

we thus differentiate twice with respect to N .

d2fL(N, γ)

dN2
= 12fL4 (γ)N2 + 6fL3 (γ)N + 2fL2 (γ) ≤ 0 for γ ∈ [0, 0.476]

and so the first derivative dfL(N,γ)
dN

is a decreasing function of N . Furthermore, d
dN
fL(4, γ) =

−2γ(34048 + 2752γ − 169248γ2 − 44000γ3 + 255856γ4 + 30972γ5 − 141866γ6 + 29076γ7 −
957γ8) ≤ 0 for γ ∈ [0, 0.476] and so dfL(N,γ)

dN
is negative for any N ≥ 4 and fL(N, γ) is a

decreasing function of N . Finally, fL(4, γ) = −38528 − 33728γ + 197088γ2 + 246032γ3 −
209720γ4 − 336836γ5 + 88074γ6 + 145979γ7 − 35136γ8 + 1197γ9 ≤ 0 for γ ∈ [0, 0.476] and

so we have
∂

∂τL

∂WL(k)

∂k

∣∣∣∣
τL=τ(1),k=koptcc

≤ 0 for γ ∈ [0, γ̂(N)]

And so, when Article XXIV is binding on the big bloc, if it could raise its tariff, it would

want to accept fewer members.

2. Article XXIV binding on the small CU leads to a more symmetric equilibrium

CU structure: the goal here is to determine how a change in the CET of the small CU

affects the large CU’s willingness to accept more or less members, i.e. we want to determine
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the sign of
∂

∂τS

∂WL(k)

∂k

∣∣∣∣
τS=τ(1),k=kopt

where τS is the external tariff imposed by the small union and WL is the welfare of a member

country of the large union. Again, we are interested in the sign of this second derivative at

the point where the small union is constrained by Article XXIV τS = τ(1) and where the

large union has chosen its size optimally. Hence, when the large union is also constrained

by Article XXIV (γ ≤ γ̂(N)), we want to evaluate the second derivative at k = koptcc , and,

when the large union is not constrained by Article XXIV (γ > γ̂(N)), we want to evaluate

the second derivative at k = koptuc .

Differentiating (8) with respect to the tariff of the small union gives

∂WL(k)

∂τS
= − 2

Γ(0)2Γ(N)2

[
(N − k)Γ(N − k)Γ(0)− τS(N − k)Γ(N − k)2

]
Differentiating with respect to k yields

∂

∂k

∂WL(k)

∂τS
=

2

Γ(0)2Γ(N)2
{Γ(0)Γ[2(N − k)]− τSΓ(N − k)Γ[3(N − k)]} (D.11)

We want to evaluate this derivative at τS = τ(1) and the optimal size of the large CU. The

optimal size of the large CU depends on whether the large CU is constrained or not. We

thus have to distinguish two cases:

2.a) For γ ≤ γ̂(N) < 0.476: the optimal size is koptcc given by (D.5). Evaluating (D.11) at

τS = τ(1) and k = koptcc yields

∂

∂τS

∂WL(k)

∂k

∣∣∣∣
τS=τ(1),k=koptcc

=
fS(N, γ)

2Γ(0)Γ(N)2D(1)λ1(N, γ)2

with

fS(N, γ) ≡ fS4 (γ)N4 + fS3 (γ)N3 + fS2 (γ)N2 + fS1 (γ)N + fS0 (γ)

fS4 (γ) ≡ γ4(10− 13γ + γ2)(292− 648γ + 373γ2 − 15γ3)

fS3 (γ) ≡ 16γ3(1944− 6852γ + 9414γ2 − 6381γ3 + 2070γ4 − 194γ5 + 5γ6)

fS2 (γ) ≡ 2γ2(64480− 226224γ + 339520γ2 − 283744γ3 + 137498γ4 − 35257γ5 + 3078γ6

− 77γ7)

fS1 (γ) ≡ 4γ(61952− 212704γ + 339600γ2 − 325104γ3 + 198216γ4 − 75878γ5 + 16253γ6

− 1324γ7 + 32γ8)

fS0 (γ) ≡ (2− γ)(92992− 258688γ + 382544γ2 − 346784γ3 + 209772γ4 − 81208γ5 + 18807γ6

− 1598γ7 + 39γ8)
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fS(N, γ) is a fourth degree polynomial in N . All the coefficients fSi (γ), i = 0, . . . , 4, are

positive for γ ∈ [0, 0.476] and so fS(N, γ) is positive for any N ≥ 0 and γ ∈ [0, γ̂(N)].

2.b) For γ > γ̂(N) > 0.466: we do not have a closed-form solution for the optimal size of

the large union, but we know from the proof of Proposition 4 that koptuc ≥ 78
100
N . We will thus

show that the second derivative (D.11) is positive for any k ∈ [ 78
100
N,N ] and γ ∈ [0.466, 1].

Evaluating (D.11) at τS = τ(1) yields

∂

∂τS

∂WL(k)

∂k

∣∣∣∣
τS=τ(1)

=
2f̃(k,N, γ)

Γ(0)Γ(N)2D(1)

with

f̃(k,N, γ) ≡ − 3γ2(2 + γ)k2

+
[
2γ(1 + 3γ)N − 4 + 8γ − 5γ2

]
k

+ γ2(2− 9γ)N2 + γ(16− 26γ + 13γ2)N + 4(2− γ)(2− 2γ + γ2)

f̃(k,N, γ) is a second degree polynomial in k. The second derivative with respect to k

is d2f̃(k,N,γ)
dk2

= −6γ2(2 + γ) < 0 for γ ∈ [0.466, 1]. Hence the first derivative of f̃ is a

decreasing function of k. The first derivative of f̃ evaluated at k = 78
100
N can be either

positive or negative. However, the first derivative evaluated at k = N is strictly negative

for γ ∈ [0.466, 1]

df̃

dk
(N,N, γ) = −2γ2(4− 3γ)N − 2γ(4− 8γ + 5γ2) < 0

And so f̃ is either a monotonically decreasing function of k or it is initially an increasing

function of k and then a decreasing function of k. In either case, if we prove that f̃ is

positive at both bounds of the considered interval, we will have proven that it is positive on

the entire interval. Evaluating f̃ at the lower bound k = 78
100
N yields

f̃(
78

100
N,N, γ) =

1

2500

[
11γ2(334− 333γ)︸ ︷︷ ︸
>0 for γ∈[0.466,1]

N2

+ 200γ(122− 169γ + 65γ2)︸ ︷︷ ︸
>0 for γ∈[0.466,1]

N

+ 10000(2− γ)(2− 2γ + γ2)︸ ︷︷ ︸
>0 for γ∈[0.466,1]

]
> 0
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Evaluating f̃ at the upper bound k = N yields

f̃(N,N, γ) = γ(4− 3γ)N + 4(2− 2γ + γ2) > 0

And so f̃ is positive for any k ∈ [ 78
100
N,N ] and γ ∈ [0.466, 1], and so it must be positive at

k = koptuc . And so, when Article XXIV is binding on the small bloc, if the small bloc could

raise its tariff, the large bloc would want to accept more members.

Proof of Proposition 6. As explained in the the proof of Proposition 4, for γ > γ̂(N),

it is difficult to find a closed-form for the optimum size of the large CU both with and

without Article XXIV. However, by studying the derivative of welfare of the large CU with

respect to its size, we are able to determine an upper bound for the size of the large CU with

Article XXIV: koptuc < 8
9
N , and a lower bound for the size of the large CU without Article

XXIV: koptuu > 8
9
N + 1, which shows that the CU structure with Article XXIV is strictly

more symmetric. The proof proceeds in two steps: first, we determine an upper bound for

koptuc , and second, we determine a lower bound for koptuu .

1) We show that kopt
uc <

8
9
N : From the proof of Proposition 4 we know that the numerator

of the derivative of welfare of the large CU with respect to its size, Huc(k,N, γ), changes

sign only once in the interval [N − k∗∗, N ]. It is initially positive and increasing function

and then it becomes a decreasing function and negative. We show that Huc(
8N
9
, N, γ) < 0

and so koptuc <
8
9
N . Evaluating Huc(k,N, γ) at k = 8

9
N yields

Huc(
8N

9
, N, γ) =

H
8/9
uc (N, γ)

177147

with

H8/9
uc (N, γ) ≡ h6(γ)N6 + h5(γ)N5 + h4(γ)N4 + h3(γ)N3 + h2(γ)N2 + h1(γ)N + h0(γ)

h6(γ) ≡ − 128γ6(1− γ)(107524− 135544γ + 42003γ2 − 2997γ3)

h5(γ) ≡ − 96γ5(1170608− 3326704γ + 3733920γ2 − 2008600γ3 + 481893γ4 − 39663γ5)

h4(γ) ≡ − 27γ4(6770112− 34686816γ + 65461812γ2 − 59159264γ3 + 27345557γ4

− 6098893γ5 + 511422γ6)

h3(γ) ≡ 972γ3(2− γ)(444816− 150388γ − 1328708γ2 + 1891005γ3 − 1072878γ4

+ 273551γ5 − 25610γ6)

h2(γ) ≡ 4374γ2(2− γ)2(221288− 283896γ − 44978γ2 + 273484γ3 − 192581γ4

+ 54631γ5 − 5522γ6)

h1(γ) ≡ 78732γ(2− γ)3(3− γ)(2968− 3148γ − 126γ2 + 1725γ3 − 977γ4 + 154γ5)

h0(γ) ≡ 177147(2− γ)4(3− γ)(336− 352γ + 40γ2 + 128γ3 − 83γ4 + 14γ5)
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H
8/9
uc (N, γ) is a sixth degree polynomial in N . We determine its sign by differentiating it

successively. The coefficients h6(γ) and h5(γ) are both negative for γ ∈ [0.466, 1] and so the

fifth derivative of H
8/9
uc (N, γ) with respect to N is negative for γ ∈ [γ̂(N), 1]. Therefore, the

fourth derivative is decreasing with N . Evaluating the fourth derivative at N = 4 yields

d4

dN4
H8/9
uc (4, γ) = − 72γ4(60931008 + 437007776γ − 438888492γ2 − 631740896γ3

+ 778687293γ4 − 207278517γ5 + 9907758γ6) < 0 for γ ∈ [0.466, 1]

Hence the fourth derivative is negative for any N ≥ 4 and the third derivative is decreasing.

Evaluating the third derivative at N = 4 yields

d3

dN3
H8/9
uc (4, γ) = − 24γ3(−216180576 + 912350952γ + 1358166396γ2 − 2542389098γ3

− 1026080069γ4 + 2118966136γ5 − 572491971γ6 + 19461546γ7)

< 0 for γ ∈ [0.466, 1]

Hence the third derivative is negative for any N ≥ 4 and the second derivative is decreasing.

Evaluating the second derivative at N = 5 yields

d2

dN2
H8/9
uc (5, γ) = − 24γ2(−322637904− 344344608γ + 2761805160γ2 + 2684481116γ3

− 5934883569γ4 − 2489306999γ5 + 5087448636γ6 − 1372813698γ7

+ 46571544γ8) < 0 for γ ∈ [0.466, 1]

Hence the second derivative is negative for any N ≥ 5 and the first derivative is decreasing.

Evaluating the first derivative at N = 7 yields

d

dN
H8/9
uc (7, γ) = − 48γ(−116838288− 791104968γ − 438540156γ2 + 6064487874γ3

+ 7654428044γ4 − 13375288074γ5 − 10877774936γ6 + 16327506879γ7

− 4364846022γ8 + 178868088γ9) < 0 for γ ∈ [0.466, 1]

Hence the first derivative is negative for any N ≥ 7 and H
8/9
uc (N, γ) is decreasing in N for

N ≥ 7. Evaluating H
8/9
uc (N, γ) at N = 9 yields

H8/9
uc (9, γ) = − 1417176(1 + 4γ)(−2016− 20736γ − 44808γ2 + 133720γ3 + 426240γ4

− 318584γ5 − 812917γ6 + 852991γ7 − 214960γ8 + 9408γ9) < 0 for γ ∈ [0.466, 1]

And so Huc(
8N
9
, N, γ) is negative for any N ≥ 9 and γ ∈ [0.466, 1]. Thus, for N ≥ 9, we

know that the derivative of welfare of the large CU with respect to its size is strictly negative

for any k ∈ [8N
9
, N ] and so the welfare function is decreasing on this interval and hence we
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must have koptuc <
8N
9

.

2) We show that kopt
uu >

8N
9

+ 1: From the proof of Proposition 4 we know that the

numerator of the derivative of welfare Huu is a decreasing function of k for k ∈ [N
2
, 9N

10
].

Furthermore, we have

Huu(
8N

9
+ 1, N, γ) =

H
8/9N+1
uu (N, γ)

43046721

with

H8/9N+1
uu (N, γ) ≡ h̃8(γ)N8 + h̃7(γ)N7 + h̃6(γ)N6 + h̃5(γ)N5 + h̃4(γ)N4 + h̃3(γ)N3

+ h̃2(γ)N2 + h̃1(γ)N + h̃0(γ)

and

h̃8(γ) ≡ 256γ8(1− γ)(−191 + 1009γ − 1053γ2 + 243γ3)

h̃7(γ) ≡ 576γ7(−9932 + 54877γ − 95199γ2 + 73923γ3 − 27441γ4 + 3780γ5)

h̃6(γ) ≡ 81γ6(−4268396 + 14080084γ − 16960511γ2 + 9412786γ3 − 2040132γ4

− 93198γ5 + 72231γ6)

h̃5(γ) ≡ − 729γ5(10223696− 9286212γ − 39303416γ2 + 94486143γ3 − 90787556γ4

+ 45666110γ5 − 11899684γ6 + 1264375γ7)

h̃4(γ) ≡ 6561γ4(798544− 65351776γ + 250517124γ2 − 427084256γ3 + 411981428γ4

− 241320219γ5 + 85459655γ6 − 16879111γ7 + 1428999γ8)

h̃3(γ) ≡ − 59049γ3(−6975232 + 79321024γ − 268606032γ2 + 461989604γ3 − 474534568γ4

+ 308796037γ5 − 128155312γ6 + 32625848γ7 − 4574638γ8 + 264497γ9)

h̃2(γ) ≡ 531441γ2(3567168− 34340928γ + 116308704γ2 − 208912384γ3 + 229568260γ4

− 163316936γ5 + 76134788γ6 − 22723839γ7 + 4063152γ8 − 375877γ9 + 12062γ10)

h̃1(γ) ≡ 4782969γ(698112− 6446016γ + 22385280γ2 − 42176912γ3 + 49261712γ4

− 37651524γ5 + 19073408γ6 − 6276883γ7 + 1263162γ8 − 134475γ9 + 4364γ10 + 228γ11)

h̃0(γ) ≡ 43046721(2− γ)(24192− 209088γ + 684576γ2 − 1203280γ3 + 1280584γ4

− 854948γ5 + 350470γ6 − 79263γ7 + 6007γ8 + 1090γ9 − 236γ10 + 8γ11)

H
8/9N+1
uu (N, γ) is an eighth degree polynomial in N which we sign again by successive dif-

ferentiation. We have h̃8(γ) ≥ 0 and h̃7(γ) > 0 for γ ∈ [0.466, 1]. The seventh derivative of

H
8/9N+1
uu (N, γ) with respect to N is thus strictly positive and the sixth derivative is increas-
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ing. Evaluating the sixth derivative at N = 14 yields

d6

dN6
H8/9N+1
uu (14, γ) = 720γ6(−345740076 + 579845268γ + 1455554257γ2 − 2925443886γ3

+ 1110593276γ4 + 264248082γ5 − 122173353γ6)

> 0 for γ ∈ [0.466, 1]

Hence the sixth derivative is positive for any N ≥ 14 and the fifth derivative is increasing.

Evaluating the fifth derivative at N = 37 yields

d5

dN5
H8/9N+1
uu (37, γ) = 120γ5(−7453074384− 69984648324γ + 117372061584γ2

+ 396170374871γ3 − 469602069600γ4 − 343198770758γ5

+ 493697013984γ6 − 113485470957γ7) > 0 for γ ∈ [0.466, 1]

Hence the fifth derivative is positive for any N ≥ 37 and the fourth derivative is increasing.

Evaluating the fourth derivative at N = 57 yields

d4

dN4
H8/9N+1
uu (57, γ) = 1944γ4(64682064− 31517274096γ − 163909258236γ2

+ 294621819684γ3 + 1047807767128γ4 − 913479950409γ5

− 1617839257915γ6 + 1786406339979γ7 − 392868234531γ8)

> 0 for γ ∈ [0.466, 1]

Hence the fourth derivative is positive for any N ≥ 57 and the third derivative is increasing.

Evaluating the third derivative at N = 78 yields

d3

dN3
H8/9N+1
uu (78, γ) = 1458γ3(1694981376− 12548074176γ − 2351281089168γ2

− 9810826864236γ3 + 17736126317880γ4 + 68479566758905γ5

− 43599047912520γ6 − 138292111396576γ7 + 138217523336946γ8

− 29772894518163γ9) > 0 for γ ∈ [0.466, 1]

Hence the third derivative is positive for any N ≥ 78 and the second derivative is increasing.

Evaluating the second derivative at N = 99 yields

d2

dN2
H8/9N+1
uu (99, γ) = 1062882γ2(3567168 + 195841728γ − 1921542144γ2

− 174867696464γ3 − 646944962468γ4 + 1170952601564γ5

+ 4759434546420γ6 − 2263227348443γ7 − 11178475532846γ8

+ 10643459033365γ9 − 2267493934194γ10) > 0 for γ ∈ [0.466, 1]
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Hence the second derivative is positive for any N ≥ 99 and the first derivative is increasing.

Evaluating the first derivative at N = 119 yields

d

dN
H8/9N+1
uu (119, γ) = γ(3339048054528 + 420354865621440γ + 13261444138967040γ2

− 149157832409171280γ3 − 9715542761362073616γ4

− 32766647617390506444γ5 + 60586315309854899496γ6

+ 247837150046952204829γ7 − 94346534470572068388γ8

− 634006781021231152741γ9 + 589625555035644706788γ10

− 124919623351641230244γ11) > 0 for γ ∈ [0.466, 1]

Hence the first derivative is positive for any N ≥ 119 and H
8/9N+1
uu (N, γ) is increasing in N

for N ≥ 119. Evaluating H
8/9N+1
uu (N, γ) at N = 139 yields

H8/9N+1
uu (139, γ) = 2082772548864 + 445085187704064γ + 32409995470751232γ2

+ 768291758281588608γ3 − 9456782826434012640γ4

− 506308930097789714112γ5 − 1599756068676308952960γ6

+ 3004720697457136302120γ7 + 12353849957872691636641γ8

− 3802331535256628965545γ9 − 33588024046516040228650γ10

+ 30743031928745898281124γ11 − 6488263933821223297128γ12

> 0 for γ ∈ [0.466, 1]

And so Huu(
8N
9
, N, γ) is positive for any N ≥ 139 and γ ∈ [0.466, 1]. Thus, for N ≥ 139,

we know that the derivative of welfare of the large CU with respect to its size is strictly

positive for any k ∈ [N
2
, 8N

9
+ 1] and so the welfare function is increasing on this interval and

hence we must have koptuu >
8N
9

+ 1.

Thus we have for N ≥ 139 and γ ∈ [γ̂(N), 1], koptuc <
8N
9
< 8N

9
+ 1 < koptuu .

E CU formation algorithm

To determine the equilibrium CU structure (the number of CUs and their size), we numeri-

cally solve backwards the bloc formation game. To do so, for every N and γ, we run a grid

search over the possible partitions of the N countries. We make use of the two following

results derived in Lemmas 5 and 7: 1) the equilibrium CU structure is asymmetric; 2) there

are at most four CUs in equilibrium. These two results allow us to significantly restrict the

number of partitions we need to consider.

The calculation algorithm is as follows: Take a given N and γ. Assume that there will
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be at most four CUs in equilibrium. Let us denote these four blocs in order of formation

1, 2, 3 and 4, and their respective size k1, k2, k3 and k4 knowing that k1 ≥ k2 ≥ k3 ≥ k4.

(Note that we are not imposing that there will be four CUs, but at most four CUs. Some

of these CUs may be empty).

Once CUs 1 and 2 form, the third CU chooses its size k3 to maximize its welfare W3.

The fourth union is formed by the remaining countries k4 = N − (k1 + k2 + k3). Thus, for

a given k1 and k2, the third union solves

argmax
k3

W3(k3, {k1, k2, k3, N − (k1 + k2 + k3)})

Hence for any k1 ∈ [N
4
, N ] and for any k2 ∈ [N−k1

3
, N−k1], we need to find k3 ∈ [N−k1−k2

2
, N−

k1 − k2] which maximizes welfare of CU 3. This gives us a “reaction function” k∗3(k1, k2).

Then we move on to calculate the size of the second union. Again, once CU 1 forms,

the second union chooses its size k2 to maximize its welfare W2 knowing k∗3(k1, k2). So for a

given k1, the second union solves

argmax
k2

W2(k2, {k1, k2, k
∗
3(k1, k2), N − (k1 + k2 + k∗3(k1, k2)})

Hence for any k1 ∈ [N
4
, N ], we need to find k2 ∈ [N−k1

3
, N − k1] which maximizes welfare

of CU 2 knowing k∗3(k1, k2). This gives us another reaction function k∗2(k1). Finally, we

determine the size of the first CU which chooses k1 to maximize its welfare W1 knowing

k∗2(k1) and k∗3(k1, k
∗
2(k1)). We solve

argmax
k1

W1(k1, {k1, k
∗
2(k1), k∗3(k1, k

∗
2(k1)), N − (k1 + k∗2(k1) + k∗3(k1, k

∗
2(k1))})

We run this grid search for 0 ≤ γ ≤ 1 (varying γ by 2 · 10−6) and for N = 4, . . . , 105.
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